Welcome to LookChem.com Sign In|Join Free

CAS

  • or
N-OCTYLZINC BROMIDE is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

131379-13-0

Post Buying Request

131379-13-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

131379-13-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 131379-13-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,3,1,3,7 and 9 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 131379-13:
(8*1)+(7*3)+(6*1)+(5*3)+(4*7)+(3*9)+(2*1)+(1*3)=110
110 % 10 = 0
So 131379-13-0 is a valid CAS Registry Number.
InChI:InChI=1/C8H17.BrH.Zn/c1-3-5-7-8-6-4-2;;/h1,3-8H2,2H3;1H;/q;;+1/p-1/rC8H17BrZn/c1-2-3-4-5-6-7-8-10-9/h2-8H2,1H3

131379-13-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H58444)  n-Octylzinc bromide, 0.5M in THF, packaged under Argon in resealable ChemSeal? bottles   

  • 131379-13-0

  • 50ml

  • 2075.0CNY

  • Detail

131379-13-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name bromozinc(1+),octane

1.2 Other means of identification

Product number -
Other names octylzinc bromide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:131379-13-0 SDS

131379-13-0Relevant articles and documents

Direct transformation of aryl 2-pyridyl esters to secondary benzylic alcohols by nickel relay catalysis

Wu, Xianqing,Li, Xiaobin,Huang, Wenyi,Wang, Yun,Xu, Hui,Cai, Liangzhen,Qu, Jingping,Chen, Yifeng

supporting information, p. 2453 - 2458 (2019/03/29)

A direct transformation of aryl esters to secondary benzylic alcohols via tandem Ni-catalyzed cross-coupling reactions of aromatic 2-pyridyl esters with alkyl zinc reagents and carbonyl group reduction by Ni-H species is achieved. Preliminary mechanistic studies reveal that the Ni-H species is generated in situ via β-hydride elimination of the Negishi reagents. The reaction is catalyzed by bench-stable nickel salts under mild conditions with wide functional group tolerance.

Docking study and biological evaluation of pyrrolidine-based iminosugars as pharmacological chaperones for Gaucher disease

Kato, Atsushi,Nakagome, Izumi,Sato, Kasumi,Yamamoto, Arisa,Adachi, Isao,Nash, Robert J.,Fleet, George W. J.,Natori, Yoshihiro,Watanabe, Yasuka,Imahori, Tatsushi,Yoshimura, Yuichi,Takahata, Hiroki,Hirono, Shuichi

, p. 1039 - 1048 (2016/01/20)

We report on the synthesis and biological evaluation of a series of α-1-C-alkylated 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives as pharmacological chaperones for Gaucher disease. The parent compound, DAB, did not show inhibition of human β-glucocerebrosidase but showed moderate intestinal α-glucosidase inhibition; in contrast, extension of α-1-C-alkyl chain length gave a series of highly potent and selective inhibitors of the β-glucocerebrosidase. Our design of α-1-C-tridecyl-DAB (5j) produced a potent inhibitor of the β-glucocerebrosidase, with IC50 value of 0.77 μM. A molecular docking study revealed that the α-1-C-tridecyl group has a favorable interaction with the hydrophobic pocket and the sugar analogue part (DAB) interacted with essential hydrogen bonds formed to Asp127, Glu235 and Glu340. Furthermore, α-1-C-tridecyl-DAB (5j) displayed enhancement of activity at an effective concentration 10-times lower than isofagomine. α-1-C-Tridecyl-DAB therefore provides the first example of a pyrrolidine iminosugar as a new class of promising pharmacological chaperones with the potential for treatment of Gaucher disease. 2016 The Royal Society of Chemistry.

Efficient synthetic method for the preparation of allyl- and propargyl-epoxides by allylation and propargylation of α-haloketones with organozinc reagents

Pan, Jie,Zhang, Min,Zhang, Songlin

, p. 1060 - 1067 (2012/04/10)

A simple, efficient, and non-metal catalyzed synthetic method for the preparation of substituted allyl- and propargyl-epoxides by allylation and propargylation of α-halo ketones with organozinc reagents in mild conditions is reported in this paper. The present method complements the existing synthetic methods due to some advantageous properties of the organozinc reagents such as availability, selectivity, operational simplicity and low toxicity.

Replacing conventional carbon nucleophiles with electrophiles: Nickel-catalyzed reductive alkylation of aryl bromides and chlorides

Everson, Daniel A.,Jones, Brittany A.,Weix, Daniel J.

, p. 6146 - 6159 (2012/05/07)

A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (-OH, -NHTs, -OAc, -OTs, -OTf, -COMe, -NHBoc, -NHCbz, -CN, -SO2Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki-Miyaura, Stille, and Hiyama-Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R-X) and no reaction at the nucleophilic carbon (R-[M]) for organoboron (-Bpin), organotin (-SnMe3), and organosilicon (-SiMe2OH) containing organic halides (X-R-[M]). A Hammett study showed a linear correlation of σ and σ(-) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2-1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents.

α-1-C-Butyl-1,4-Dideoxy-1,4-Imino-L-Arabinitol as a second-Generation iminosugar-based oral α-Glucosidase inhibitor for improving postprandial hyperglycemia

Kato, Atsushi,Hayashi, Erina,Miyauchi, Saori,Adachi, Isao,Imahori, Tatsushi,Natori, Yoshihiro,Yoshimura, Yuichi,Nash, Robert J.,Shimaoka, Hideyuki,Nakagome, Izumi,Koseki, Jun,Hirono, Shuichi,Takahata, Hiroki

, p. 10347 - 10362 (2013/02/23)

We report on the synthesis and the biological evaluation of a series of α-1-C-alkylated 1,4-dideoxy-1,4-imino-l-arabinitol (LAB) derivatives. The asymmetric synthesis of the derivatives was achieved by asymmetric allylic alkylation, ring-closing metathesis, and Negishi cross-coupling as key reactions. α-1-C-Butyl-LAB is a potent inhibitor of intestinal maltase, isomaltase, and sucrase, with IC50 values of 0.13, 4.7, and 0.032 μM, respectively. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis revealed that this compound differs from miglitol in that it does not influence oligosaccharide processing and the maturation of glycoproteins. A molecular docking study of maltase-glucoamylase suggested that the interaction modes and the orientations of α-1-C-butyl-LAB and miglitol are clearly different. Furthermore, α-1-C-butyl-LAB strongly suppressed postprandial hyperglycemia at an early phase, similar to miglitol in vivo. It is noteworthy that the effective dose was about 10-fold lower than that for miglitol. α-1-C-Butyl-LAB therefore represents a new class of promising compounds that can improve postprandial hyperglycemia.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 131379-13-0