13515-06-5Relevant articles and documents
Hederagenin compound H-X with anti-lung cancer effect and preparation method and application thereof
-
Paragraph 0048; 0049; 0051; 0052; 0120; 0121, (2020/04/17)
The invention provides a hederagenin compound H-X with an anti-tumor effect and a preparation method and application thereof. The structural general formula 1 is shown in the specifications. Most of the derivatives provided by the invention have obvious inhibition effects on tumor cells A549, MCF-7 and HepG2, and the compound hederagenin-2, 6-dimethylpyrazine (H-08) shows good selectivity betweentumors and normal conditions, especially on lung cancer A549 cells. The IC50 of the compound to A549, MCF-7, HepG2, MDCK and H9c2 is 3.45+/-0.59 muM, 8.73+/-1.49 muM, 8.71+/-0.38 muM, 14.11+/-0.04 muM, and 16.69+/-0.12 muM, the inhibition effect on A549 cells is similar to that of a positive drug cis-platinum (IC50 is 3.85+/-0.63 muM), but the toxicity on MDCK and H9c2 is obviously lower than thatof cis-platinum.
Design, synthesis, and cytotoxic analysis of novel hederagenin–pyrazine derivatives based on partial least squares discriminant analysis
Fang, Kang,Zhang, Xiao-Hua,Han, Yao-Tian,Wu, Gao-Rong,Cai, De-Sheng,Xue, Nan-Nan,Guo, Wen-Bo,Yang, Yu-Qin,Chen, Meng,Zhang, Xin-Yu,Wang, Hui,Ma, Tao,Wang, Peng-Long,Lei, Hai-Min
, (2018/10/20)
Hederagenin (He) is a novel triterpene template for the development of new antitumor compounds. In this study, 26 new He–pyrazine derivatives were synthetized in an attempt to develop potent antitumor agents; they were screened for in vitro cytotoxicity against tumor and non-tumor cell lines. The majority of these derivatives showed much stronger cytotoxic activity than He. Remarkably, the most potent was compound 9 (half maximal inhibitory concentration (IC50) was 3.45 ± 0.59 μM), which exhibited similar antitumor activities against A549 (human non-small-cell lung cancer) as the positive drug cisplatin (DDP; IC50 was 3.85 ± 0.63 μM), while it showed lower cytotoxicity on H9c2 (murine heart myoblast; IC50 was 16.69 ± 0.12 μM) cell lines. Compound 9 could induce the early apoptosis and evoke cell-cycle arrest at the synthesis (S) phase of A549 cells. Impressively, we innovatively introduced the method of cluster analysis modeled as partial least squares discriminant analysis (PLS-DA) into the structure–activity relationship (SAR) evaluation, and SAR confirmed that pyrazine had a profound effect on the antitumor activity of He. The present studies highlight the importance of pyrazine derivatives of He in the discovery and development of novel antitumor agents.
Pyrazine biosynthesis in corynebacterium glutamicum
Dickschat, Jeroen S.,Wickel, Susanne,Bolten, Christoph J.,Nawrath, Thorben,Schulz, Stefan,Wittmann, Christoph
supporting information; experimental part, p. 2687 - 2695 (2010/08/07)
The volatile compounds released by Corynebacterium glutamicum were collected by use of the CLSA technique (closed-loop stripping apparatus) and analysed by GC-MS. The headspace extracts contained several acyloins and pyrazines that were identified by their synthesis or comparison to commercial standards. Feeding experiments with [2H7]acetoin resulted in the incorporation of labelling into trimethylpyrazine and tetramethylpyrazine. Several deletion mutants targeting genes of the primary metabolism, were constructed to elucidate the biosynthetic pathway to pyrazines in detail. A deletion mutant of the ketol-acid reductoisomerase was not able to convert the acetoin precursor (S)2-acetolactate into the pathway intermediate (R)-2,3-dihydroxy-3-methylbutanoate to the branched amino acids. This mutant requires valine, leucine, and isoleucine for growth and produces significantly higher amounts and more different compounds of the acyloin and pyrazine classes. Gene deletion of the acetolactate synthase (AS) resulted in a mutant that is not able to convert pyruvate into (5)-2-acetolactate. This mutant also requires branched amino acids and produces only very small amounts of pyrazines likely from valine via the valine biosynthetic pathway operating in reverse order. A ΔASΔKR double mutant was constructed that does not produce any pyrazines at all. These results open up a detailed biosynthetic model for the formation of alkylated pyrazines via acyloins.
Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
-
Page/Page column 53, (2008/06/13)
The present invention relates to the discovery that certain non-naturally occurring, non-peptide amide compounds and amide derivatives, such as oxalamides, ureas, and acrylamides, are useful flavor or taste modifiers, such as a flavoring or flavoring agents and flavor or taste enhancer, more particularly, savory (the “umami” taste of monosodium glutamate) or sweet taste modifiers,—savory or sweet flavoring agents and savory or sweet flavor enhancers, for food, beverages, and other comestible or orally administered medicinal products or compositions.