143426-49-7Relevant articles and documents
HETEROAROMATIC COMPOUNDS AND USES THEREOF
-
, (2022/04/03)
Providing heteraromatic compounds and uses thereof. In particular, providing heteraromatic compounds of formula (I), pharmaceutical compositions comprising same, methods for preparing same and uses thereof, wherein the variables are as defined in the description.
Combined KOH/BEt3Catalyst for Selective Deaminative Hydroboration of Aromatic Carboxamides for Construction of Luminophores
Li, Jinshan,Wang, Jiali,Yang, Jianguo,Yao, Wubing,Zhong, Aiguo
supporting information, p. 8086 - 8090 (2020/11/03)
The selective catalytic C-N bond cleavage of amides into value-added amine products is a desirable but challenging transformation. Molecules containing iminodibenzyl motifs are prevalent in pharmaceutical molecules and functional materials. Here we established a combined KOH/BEt3 catalyst for deaminative hydroboration of acyl-iminodibenzyl derivatives, including nonheterocyclic carboxamides, to the corresponding amines. This novel transition-metal-free methodology was also applied to the construction of Clomipramine and luminophores.
PYRROLIDINE GLYCOSIDASE INHIBITORS
-
Page/Page column 136, (2020/03/15)
Compounds of formula (I) wherein A, W, R3b, Z and p have the meaning according to the claims can be employed, inter alia, for the treatment of tauopathies and Alzheimer's disease.
SUBSTITUTED AZACYCLES AS MUSCARINIC M1 RECEPTOR POSITIVE ALLOSTERIC MODULATORS
-
, (2019/06/11)
The present invention relates to compounds of formula (I), or their isotopic forms, stereoisomers, tautomers or pharmaceutically acceptable salt (s) thereof as muscarinic M1 receptor positive allosteric modulators (M1 PAMs). The present invention describe
MUSCARINIC M1 RECEPTOR POSITIVE ALLOSTERIC MODULATORS
-
Page/Page column 43; 48, (2018/03/25)
The present invention relates to compounds of formula (I), or their isotopic forms, stereoisomers, tautomers or pharmaceutically acceptable salt (s) thereof as muscarinic M1 receptor positive allosteric modulators (M1 PAMs). The present invention describes the preparation, pharmaceutical composition and the use of compound formula (I).
ISOINDOLINE-1-ONE DERIVATIVES AS CHOLINERGIC MUSCARINIC M1 RECEPTOR POSITIVE ALLOESTERIC MODULATOR ACTIVITY FOR THE TREATMENT OF ALZHEIMERS DISEASE
-
, (2015/11/10)
The present invention provides a compound having a cholinergic muscarinic M1 receptor positive allosteric modulator activity and useful as an agent for the prophylaxis or treatment of Alzheimer's disease, schizophrenia, pain, sleep disorder, Parkinson's disease dementia, dementia with Lewy bodies, and the like. The present invention relates to a compound represented by the formula (I) or a salt thereof. (I) wherein each symbol is as described in the specification, or a salt thereof.
Aromatic hydrazides as specific inhibitors of bovine serum amine oxidase
Artico,Silvestri,Stefancich,Avigliano,Di Giulio,Maccarrone,Agostinelli,Mondovi,Morpurgo
, p. 219 - 228 (2007/10/02)
New hydrazides were synthesized in search for specific inhibitors of bovine serum amine oxidase: a series of benzoic and phenylacetic acid hydrazides containing the 1H-imidazol-1-yl or the 1H-imidazol-1-ylmethyl group as (o,m,p)-substituent in the phenyl ring; an analogous series of p-substituted phenylhydrazides with 5 or 6-membered heterocyclic ring as substituent, and a series of similar phenylpropionic hydrazides. The longer and more flexible phenylacetic hydrazides, and to a somewhat lesser extent the phenylpropionic ones, were better specific inhibitors of bovine serum amine oxidase than the benzoic hydrazides, which were also bound by the enzyme with high affinity, but at a slow rate. Derivatives with p- and m-substituents were more reactive than the o-substituted ones. The chemical nature of the substituent was less important than its position in the phenyl ring and the presence of methylene spacers. These data point to the presence of a hydrophobic site at short distance from the protein carbonyl cofactor, so that simultaneous interaction of the 2 ends of the inhibitor molecule can occur at the 2 sites. The presence of the hydrophobic site was confirmed by the capability of some molecule deprived of the hydrazidic group to act as mild inhibitors. All hydrazides were less reactive by 2-3 orders of magnitude towards pig kidney diamine oxidase and FAD-dependent monoamine oxidase from rat brain mitochondria, while the other compounds showed similar inhibition power against all proteins. The specificity for the bovine enzyme seems therefore to be related to the concerted action of the 2 moieties of the inhibitor molecule.