150224-18-3Relevant articles and documents
Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM 10 from the domestic burning of coal and wood in the U.K.
Lee, Robert G. M.,Coleman, Peter,Jones, Joanne L.,Jones, Kevin C.,Lohmann, Rainer
, p. 1436 - 1447 (2007/10/03)
This paper presents emission factors (EFs) derived for a range of persistent organic pollutants (POPs) when coal and wood were subject to controlled burning experiments, designed to simulate domestic burning for space heating. A wide range of POPs were emitted, with emissions from coal being higher than those from wood. Highest EFs were obtained for particulate matter, PM10, (~ 10 g/kg fuel) and polycyclic aromatic hydrocarbons (~ 100 mg/ kg fuel for ΣPAHs). For chlorinated compounds, EFs were highest for polychlorinated biphenyls (PCBs), with polychlorinated naphthalenes (PCNs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) being less abundant. EFs were on the order of 1000 ng/kg fuel for ΣPCBs, 100s ng/ kg fuel for ΣPCNs and 100 ng/kg fuel for ΣPCDD/Fs. The study confirmed that mono- to trichlorinated dibenzofurans, Cl1,2,3DFs, were strong indicators of low temperature combustion processes, such as the domestic burning of coal and wood. It is concluded that numerous PCB and PCN congeners are routinely formed during the combustion of solid fuels. However, their combined emissions from the domestic burning of coal and wood would contribute only a few percent to annual U.K. emission estimates. Emissions of PAHs and PM 10 were major contributors to U.K. national emission inventories. Major emissions were found from the domestic burning for Cl1,2,3DFs, while the contribution of PCDD/F-ΣTEQ to total U.K. emissions was minor.
De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes
Iino,Imagawa,Takeuchi,Sadakata
, p. 1038 - 1043 (2007/10/03)
Polychlorinated dibenzofurans (PCDFs) and polychlorinated naphthalenes (PCNs) are known to be emitted from municipal waste incinerators (MWIs) with polychlorinated dibenzo-p-dioxins (PCDDs). Two formation paths for PCDD/Fs could mainly work, which are condensation of the precursors such as chlorophenols and 'de novo' formation from carbon. However the correlation between the chemical structure of carbon and the resulting PCDD/Fs still remains unknown. In this study, the PCDD/Fs formation from polycyclic aromatic hydrocarbons (PAHs) and CuCl was examined at 400 under 10% O2. Coronene among the PAHs characteristically gave 1,2,8,9-T4CDF and the derivatives. These isomers clearly indicate that chlorination causes the cleavage of the C-C bonds in a coronene molecule and also that oxygen is easily incorporated from its outside to form 1,2,8,9-T4CDF. The symmetrical preformed structures in the coronene molecule enabled to amplify the de novo formation of the isomer. PCNs are also formed directly from these PAHs. Since there have been few reports on the formation mechanism of PCNs, this study will be a first step to know the whole formation paths. We also define the de novo synthesis as the breakdown reaction of a carbon matrix, since the word has been used without the precise definition.
Selective reduction of polychlorinated naphthalenes with zinc
Mil'tsov,Karavan,Nikiforov,Tribulovich,Varentsov
, p. 698 - 702 (2007/10/03)
Reduction of polychlorinated naphthalenes with zinc in acetic acid requires the presence of three chlorine atoms in positions 1, 2, and 8, the chlorine atom in position 1 being reduced. The relative rates of reduction of various polychloronaphthalenes were measured.