Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2,5-Dihydroxybenzohydrazide, also known as DBH, is a chemical compound with the molecular formula C7H8N2O3. It is a white crystalline powder that is sparingly soluble in water. This versatile compound possesses antioxidant properties and is utilized in various applications across different industries, making it a valuable asset in the field of chemistry.

15791-90-9 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 15791-90-9 Structure
  • Basic information

    1. Product Name: 2,5-DIHYDROXYBENZOHYDRAZIDE
    2. Synonyms: 2,5-DIHYDROXYBENZOHYDRAZIDE;2,5-Dihydroxybenzhydrazide;2,5-dihydroxybenzohydrazide(SALTDATA: FREE);Benzoic acid, 2,5-dihydroxy-, hydrazide
    3. CAS NO:15791-90-9
    4. Molecular Formula: C7H8N2O3
    5. Molecular Weight: 168.15
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 15791-90-9.mol
  • Chemical Properties

    1. Melting Point: 209-210 °C
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: /
    5. Density: 1.477g/cm3
    6. Refractive Index: 1.67
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. PKA: 9.15±0.43(Predicted)
    10. CAS DataBase Reference: 2,5-DIHYDROXYBENZOHYDRAZIDE(CAS DataBase Reference)
    11. NIST Chemistry Reference: 2,5-DIHYDROXYBENZOHYDRAZIDE(15791-90-9)
    12. EPA Substance Registry System: 2,5-DIHYDROXYBENZOHYDRAZIDE(15791-90-9)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 15791-90-9(Hazardous Substances Data)

15791-90-9 Usage

Uses

Used in Dye Production:
2,5-Dihydroxybenzohydrazide is used as an intermediate in the production of dyes. Its chemical properties allow it to be a key component in the synthesis of various dye compounds, contributing to the color and stability of the final product.
Used in Pharmaceutical Industry:
In the pharmaceutical industry, 2,5-dihydroxybenzohydrazide is used as an intermediate in the synthesis of various drugs. Its unique structure and properties make it a valuable building block for the development of new pharmaceutical compounds.
Used in Organic Synthesis:
2,5-Dihydroxybenzohydrazide is used as an intermediate in organic synthesis. Its reactivity and functional groups enable it to participate in various chemical reactions, facilitating the synthesis of a wide range of organic compounds.
Used as an Antioxidant:
2,5-Dihydroxybenzohydrazide is utilized as an antioxidant due to its ability to neutralize free radicals and prevent oxidative damage. This property makes it useful in various applications, such as in the food industry to extend the shelf life of products and in the cosmetic industry to protect against environmental damage.
Used in Analytical Chemistry:
2,5-Dihydroxybenzohydrazide is used as a reagent in the determination of certain metals in analytical chemistry. Its ability to form complexes with metal ions allows for the accurate measurement and analysis of metal concentrations in various samples.
Used in Antiviral and Antibacterial Applications:
2,5-Dihydroxybenzohydrazide has shown potential for use in the development of antiviral and antibacterial agents. Its ability to inhibit the growth of viruses and bacteria makes it a promising candidate for the development of new therapeutic agents to combat infectious diseases.

Check Digit Verification of cas no

The CAS Registry Mumber 15791-90-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,7,9 and 1 respectively; the second part has 2 digits, 9 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 15791-90:
(7*1)+(6*5)+(5*7)+(4*9)+(3*1)+(2*9)+(1*0)=129
129 % 10 = 9
So 15791-90-9 is a valid CAS Registry Number.
InChI:InChI=1/C7H8N2O3/c8-9-7(12)5-3-4(10)1-2-6(5)11/h1-3,10-11H,8H2,(H,9,12)

15791-90-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,5-dihydroxybenzohydrazide

1.2 Other means of identification

Product number -
Other names 2,5-Dihydroxy-benzoesaeure-hydrazid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:15791-90-9 SDS

15791-90-9Relevant articles and documents

4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors

Baud, Damien,Bebrone, Carine,Becker, Katja,Benvenuti, Manuela,Cerboni, Giulia,Chelini, Giulia,Cutolo, Giuliano,De Luca, Filomena,Docquier, Jean-Denis,Feller, Georges,Fischer, Marina,Galleni, Moreno,Gavara, Laurent,Gresh, Nohad,Kwapien, Karolina,Legru, Alice,Mangani, Stefano,Mercuri, Paola,Pozzi, Cecilia,Sannio, Filomena,Sevaille, Laurent,Tanfoni, Silvia,Verdirosa, Federica,Berthomieu, Dorothée,Bestgen, Beno?t,Frère, Jean-Marie,Hernandez, Jean-Fran?ois

supporting information, (2020/09/16)

Resistance to β-lactam antibiotics in Gram-negatives producing metallo-β-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the μM to sub-μM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several β-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.

Structure based discovery of novel hexokinase 2 inhibitors

Chen, Lixia,Gao, Suyu,Li, Hua,Li, Mingxue,Li, Xingzhou,Liu, Yang,Wu, Canrong,Yang, Kaiyin,Zhang, Yujie,Zheng, Mengzhu

supporting information, (2020/02/04)

Hexokinase 2 (HK2) is over-expressed in most of human cancers and has been proved to be a promising target for cancer therapy. In this study, based on the structure of HK2, we screened over 6 millions of compounds to obtain the lead. A total of 26 (E)-N′-(2,3,4-trihydroxybenzylidene) arylhydrazide derivatives were then designed, synthesized, and evaluated for their HK2 enzyme activity and IC50 values against two cancer cell lines. Most of the 26 target compounds showed excellently in vitro activity. Among them, compound 3j showed the strongest inhibitory effects on HK2 enzyme activity with an IC50 of 0.53 ± 0.13 μM and exhibited the most potent growth inhibition against SW480 cells with an IC50 of 7.13 ± 1.12 μM, which deserves further studies.

Synthesis and evaluation of new phenolic derivatives as antimicrobial and antioxidant agents

Chaaban, Ibrahim,El Khawass, El Sayeda M.,Abd El Razik, Heba A.,El Salamouni, Nehad S.,Ghareeb, Doaa A.,Abdel Wahab, Abeer E.

, p. 127 - 139 (2017/12/04)

Abstract: New phenolic derivatives bearing hydrazine and 1,3,4-oxadiazole moieties were synthesized and evaluated for their in vitro antimicrobial and antioxidant activities. Most of the compounds revealed pronounced activity against Pseudomonas aeruginos

1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases

Sevaille, Laurent,Gavara, Laurent,Bebrone, Carine,De Luca, Filomena,Nauton, Lionel,Achard, Maud,Mercuri, Paola,Tanfoni, Silvia,Borgianni, Luisa,Guyon, Carole,Lonjon, Pauline,Turan-Zitouni, Gülhan,Dzieciolowski, Julia,Becker, Katja,Bénard, Lionel,Condon, Ciaran,Maillard, Ludovic,Martinez, Jean,Frère, Jean-Marie,Dideberg, Otto,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

, p. 972 - 985 (2017/06/27)

Metallo-β-lactamases (MBLs) cause resistance of Gram-negative bacteria to β-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL inhibitors of clinical value are still lacking. We previously identified the original binding mode of 4-amino-2,4-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione (compound IIIA) within the dizinc active site of the L1 MBL. Herein we present the crystallographic structure of a complex of L1 with the corresponding non-amino compound IIIB (1,2-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione). Unexpectedly, the binding mode of IIIB was similar but reverse to that of IIIA. The 3 D structures suggested that the triazole–thione scaffold was suitable to bind to the catalytic site of dizinc metalloenzymes. On the basis of these results, we synthesized 54 analogues of IIIA or IIIB. Nineteen showed IC50 values in the micromolar range toward at least one of five representative MBLs (i.e., L1, VIM-4, VIM-2, NDM-1, and IMP-1). Five of these exhibited a significant inhibition of at least four enzymes, including NDM-1, VIM-2, and IMP-1. Active compounds mainly featured either halogen or bulky bicyclic aryl substituents. Finally, some compounds were also tested on several microbial dinuclear zinc-dependent hydrolases belonging to the MBL-fold superfamily (i.e., endonucleases and glyoxalase II) to explore their activity toward structurally similar but functionally distinct enzymes. Whereas the bacterial tRNases were not inhibited, the best IC50 values toward plasmodial glyoxalase II were in the 10 μm range.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15791-90-9