160842-62-6Relevant articles and documents
From Lead to Drug Candidate: Optimization of 3-(Phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine Derivatives as Agents for the Treatment of Triple Negative Breast Cancer
Zhang, Chun-Hui,Chen, Kai,Jiao, Yan,Li, Lin-Li,Li, Ya-Ping,Zhang, Rong-Jie,Zheng, Ming-Wu,Zhong, Lei,Huang, Shen-Zhen,Song, Chun-Li,Lin, Wan-Ting,Yang, Jiao,Xiang, Rong,Peng, Bing,Han, Jun-Hong,Lu, Guang-Wen,Wei, Yu-Quan,Yang, Sheng-Yong
supporting information, p. 9788 - 9805 (2016/11/19)
Herein we report the sophisticated process of structural optimization toward a previously disclosed Src inhibitor, compound 1, which showed high potency in the treatment of triple negative breast cancer (TNBC) both in vitro and in vivo but had considerable toxicity. A series of 3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine derivatives were synthesized. In vitro cell-based phenotypic screening together with in vivo assays and structure-activity relationship (SAR) studies finally led to the discovery of N-(3-((4-amino-1-(trans-4-hydroxycyclohexyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)ethynyl)-4-methylphenyl)-4-methyl-3-(trifluoromethyl)benzamide (13an). 13an is a multikinase inhibitor, which potently inhibited Src (IC50 = 0.003 μM), KDR (IC50 = 0.032 μM), and several kinases involved in the MAPK signal transduction. This compound showed potent anti-TNBC activities both in vitro and in vivo, and good pharmacokinetic properties and low toxicity. Mechanisms of action of anti-TNBC were also investigated. Collectively, the data obtained in this study indicate that 13an could be a promising drug candidate for the treatment of TNBC and hence merits further studies.
Utility of Complementary Molecular Reactivity and Molecular Recognition (CMR/R) Technology and Polymer-Supported Reagents in the Solution-Phase Synthesis of Heterocyclic Carboxamides
Parlow, John J.,Mischke, Deborah A.,Woodard, Scott S.
, p. 5908 - 5919 (2007/10/03)
The use of our recently reported chemical library purification strategy in the development of a herbicidal lead, N-(3-benzoylphenyl)-3-(1,1-dimethylethyl)-1-methyl-1H-pyrazole-5-carboxamide (3), is described. The approach applying fundamental properties of complementary molecular reactivity and molecular recognition (CMR/R) as the basis for a general purification strategy was utilized. Polymeric reagents were used in the synthesis to generate reactive species involved in product formation, and complementary molecular reactivity/molecular recognition polymer 8 (CMR/R polymer 8) was used in the solution-phase syntheses of building blocks, primary libraries, and lead refinement libraries. An extension of the CMR/R methodology was applied, utilizing a sequestration enabling reagent (SER), transforming a reactant into an electrophilic species sequestrable by CMR/R polymer 8. This library purification strategy enabled rapid lead generation and lead refinement to afford herbicide 27o. The CMR/R solid-phase purification technique enabled a simple, general, and powerful protocol, eliminating the usual tedious and time-consuming methods required for solution-phase product purification. The result was the synthesis of hundreds of compounds, prepared in a relatively short time, leading to a compound with a 4-fold improvement in herbicidal activity over the initial lead.