166164-76-7Relevant articles and documents
Stabilized Rh0-nanoparticles-Montmorillonite clay composite: Synthesis and catalytic transfer hydrogenation reaction
Sarmah, Podma Pollov,Dutta, Dipak Kumar
, p. 355 - 360 (2014)
Rh0-nanoparticles of around 5 nm size distributed homogeneously into the nanopores of acid activated Montmorillonite clay were generated by incipient wetness impregnation of RhCl3, followed by reduction with ethylene glycol. Acid act
Synthesis, Stability, and (De)hydrogenation Catalysis by Normal and Abnormal Alkene- And Picolyl-Tethered NHC Ruthenium Complexes
Malan, Frederick P.,Singleton, Eric,Van Rooyen, Petrus H.,Albrecht, Martin,Landman, Marilé
, p. 2624 - 2635 (2019)
A series of p-cymene and cyclopentadienyl Ru(II)-aNHC complexes were synthesized from 2-methylimidazolium salts with either an N-bound alkenyl (1, 3) or picolyl tether (6, 7). The C(5)-Me substituted alkenyl-tethered analogues (2, 4) were also synthesized. Ag-mediated C(2)-dealkylation was a prominent side reaction that led to the formation of normally bound NHC Ru(II) complexes, which in selected cases were isolated (5, 8). A C(4)- over C(2)-selectivity for ruthenium binding was established by protecting the C(2)-position with an iPr group on the imidazolium precursor, for which unique p-cymene (9) and cyclopentadienyl (10) Ru(II)-aNHC derivatives were synthesized. All complexes were applied in the transfer hydrogenation of ketones and in secondary alcohol oxidation, with higher catalytic activity for the p-cymene over the cyclopentadienyl systems, as well as the alkenyl- over the picolyl-containing aNHC complexes.
Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base–Metal Catalysis
Newar, Rajashree,Akhtar, Naved,Antil, Neha,Kumar, Ajay,Shukla, Sakshi,Begum, Wahida,Manna, Kuntal
supporting information, p. 10964 - 10970 (2021/03/29)
We report a strategy to develop heterogeneous single-site enantioselective catalysts based on naturally occurring amino acids and earth-abundant metals for eco-friendly asymmetric catalysis. The grafting of amino acids within the pores of a metal-organic framework (MOF), followed by post-synthetic metalation with iron precursor, affords highly active and enantioselective (>99 % ee for 10 examples) catalysts for hydrosilylation and hydroboration of carbonyl compounds. Impressively, the MOF-Fe catalyst displayed high turnover numbers of up to 10 000 and was recycled and reused more than 15 times without diminishing the enantioselectivity. MOF-Fe displayed much higher activity and enantioselectivity than its homogeneous control catalyst, likely due to the formation of robust single-site catalyst in the MOF through site-isolation.
Chiral Iron(II)-Catalysts within Valinol-Grafted Metal-Organic Frameworks for Enantioselective Reduction of Ketones
Akhtar, Naved,Antil, Neha,Begum, Wahida,Chauhan, Manav,Kumar, Ajay,Manna, Kuntal,Newar, Rajashree
, p. 10450 - 10459 (2021/08/31)
The development of highly efficient and enantioselective heterogeneous catalysts based on earth-abundant elements and inexpensive chiral ligands is essential for environment-friendly and economical production of optically active compounds. We report a strategy of synthesizing chiral amino alcohol-functionalized metal-organic frameworks (MOFs) to afford highly enantioselective single-site base-metal catalysts for asymmetric organic transformations. The chiral MOFs (vol-UiO) were prepared by grafting of chiral amino alcohol such as l-valinol within the pores of aldehyde-functionalized UiO-MOFs via formation of imine linkages. The metalation of vol-UiO with FeCl2 in THF gives amino alcohol coordinated octahedral FeII species of vol-FeCl(THF)3 within the MOFs as determined by X-ray absorption spectroscopy. Upon activation with LiCH2SiMe3, vol-UiO-Fe catalyzed hydrosilylation and hydroboration of a range of aliphatic and aromatic carbonyls to afford the corresponding chiral alcohols with enantiomeric excesses up to 99%. Vol-UiO-Fe catalysts have high turnover numbers of up to 15 ?000 and could be reused at least 10 times without any loss of activity and enantioselectivity. The spectroscopic, kinetic, and computational studies suggest iron-hydride as the catalytic species, which undergoes enantioselective 1,2-insertion of carbonyl to give an iron-alkoxide intermediate. The subsequent σ-bond metathesis between Fe-O bond and Si-H bond of silane produces chiral silyl ether. This work highlights the importance of MOFs as the tunable molecular material for designing chiral solid catalysts based on inexpensive natural feedstocks such as chiral amino acids and base-metals for asymmetric organic transformations.
The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst
Chao, Rebecca R.,Lau, Ian C.-K.,Coleman, Tom,Churchman, Luke R.,Child, Stella A.,Lee, Joel H. Z.,Bruning, John B.,De Voss, James J.,Bell, Stephen G.
, p. 14765 - 14777 (2021/09/14)
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)?1.min?1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.
Method for synthesizing secondary alcohol in water phase
-
Paragraph 0031-0032, (2021/07/14)
The invention discloses a method for synthesizing secondary alcohol in a water phase. The method comprises the following steps: taking ketone as a raw material, selecting water as a solvent, and carrying out catalytic hydrogenation reaction on the ketone in the presence of a water-soluble catalyst to obtain the secondary alcohol, wherein the catalyst is a metal iridium complex [Cp * Ir (2, 2'-bpyO)(OH)][Na]. Water is used as the solvent, so that the use of an organic solvent is avoided, and the method is more environment-friendly; the reaction is carried out at relatively low temperature and normal pressure, and the reaction conditions are mild; alkali is not needed in the reaction, so that generation of byproducts is avoided; and the conversion rate of the raw materials is high, and the yield of the obtained product is high. The method not only has academic research value, but also has a certain industrialization prospect.
Ambient-pressure highly active hydrogenation of ketones and aldehydes catalyzed by a metal-ligand bifunctional iridium catalyst under base-free conditions in water
Wang, Rongzhou,Yue, Yuancheng,Qi, Jipeng,Liu, Shiyuan,Song, Ao,Zhuo, Shuping,Xing, Ling-Bao
, p. 1 - 7 (2021/05/17)
A green, efficient, and high active catalytic system for the hydrogenation of ketones and aldehydes to produce corresponding alcohols under atmospheric-pressure H2 gas and ambient temperature conditions was developed by a water-soluble metal–ligand bifunctional catalyst [Cp*Ir(2,2′-bpyO)(OH)][Na] in water without addition of a base. The catalyst exhibited high activity for the hydrogenation of ketones and aldehydes. Furthermore, it was worth noting that many readily reducible or labile functional groups in the same molecule, such as cyan, nitro, and ester groups, remained unchanged. Interestingly, the unsaturated aldehydes can be also selectively hydrogenated to give corresponding unsaturated alcohols with remaining C=C bond in good yields. In addition, this reaction could be extended to gram levels and has a large potential of wide application in future industrial.
Rhodium-Catalyzed Regiodivergent Synthesis of Alkylboronates via Deoxygenative Hydroboration of Aryl Ketones: Mechanism and Origin of Selectivities
Zhang, Bing,Xu, Xin,Tao, Lei,Lin, Zhenyang,Zhao, Wanxiang
, p. 9495 - 9505 (2021/08/04)
Here, we report an efficient rhodium-catalyzed deoxygenative borylation of ketones to synthesize alkylboronates, in which the regioselectivity can be switched by the choice of the ligand. The linear alkylboronates were obtained exclusively in the presence of P(nBu)3, and PPh2Me favored the formation of branched alkylboronates. The protocol also allows access to 1,1,2-triboronates from the readily available ketones. Mechanistic studies suggest that this Rh-catalyzed deoxygenative borylation of ketones goes through an alkene intermediate, which undergoes regiodivergent hydroboration to afford linear and branched alkylboronates. The different steric effects of PPh2Me and P(nBu)3 were found to be responsible for product selectivity by density functional theory calculations. The alkene intermediate can alternatively undergo sequential dehydrogenative borylation and hydroboration to deliver the triboronates.
Iridium Azocarboxamide Complexes: Variable Coordination Modes, C-H Activation, Transfer Hydrogenation Catalysis, and Mechanistic Insights
Albold, Uta,Chandra, Shubhadeep,Hazari, Arijit Singha,Kelm, Ola,Ko?mrlj, Janez,Sarkar, Biprajit,Urankar, Damijana
supporting information, p. 3907 - 3916 (2021/12/03)
Azocarboxamides, a special class of azo ligands, display intriguing electronic properties due to their versatile binding modes and coordination flexibility. These properties may have significant implications for their use in homogeneous catalysis. In the present report, half-sandwich Ir-Cp? complexes of two different azocarboxamide ligands are presented. Different coordination motifs of the ligand were realized using base and chloride abstracting ligand to give N∧N-, N∧O-, and N∧C-chelated monomeric iridium complexes. For the azocarboxamide ligand having methoxy substituted at the phenyl ring, a mixture of N∧C-chelated mononuclear (Ir-5) and N∧N,N∧C-chelated dinuclear complexes (Ir-4) were obtained by activating the C-H bond of the aryl ring. No such C-H activation was observed for the ligand without the methoxy substituent. The molecular identity of the complexes was confirmed by spectroscopic analyses, while X-ray diffraction analyses further confirmed three-legged piano-stool structure of the complexes along with the above binding modes. All complexes were found to exhibit remarkable activity as precatalysts for the transfer hydrogenation of carbonyl groups in the presence of a base, even at low catalyst loading. Optimization of reaction conditions divulged superior catalytic activity of Ir-3 and Ir-4 complexes in transfer hydrogenation over the other catalysts. Investigation of the influence of binding modes on the catalytic activity along with wide range substrates, tolerance to functional groups, and mechanistic insights into the reaction pathway are also presented. These are the first examples of C-H activation in azocarboxamide ligands.
An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode
Abazid, Ayham H.,Clamor, Nils,Nachtsheim, Boris J.
, p. 8042 - 8048 (2020/09/21)
The application of a triazole-substituted chiral iodoarene in a direct enantioselective hydroxylation of alkyl arenes is reported. This method allows the rapid synthesis of chiral benzyl alcohols in high yields and stereocontrol, despite its nontemplated nature. In a cascade activation consisting of an initial irradiation-induced radical C-H-bromination and a consecutive enantioconvergent hydroxylation, the iodoarene catalyst has a dual role. It initiates the radical bromination in its oxidized state through an in-situ-formed bromoiodane and in the second, Cu-catalyzed step, it acts as a chiral ligand. This work demonstrates the ability of a chiral aryl iodide catalyst acting both as an oxidant and as a chiral ligand in a highly enantioselective C-H-activating transformation. Furthermore, this concept presents an enantioconvergent hydroxylation with high selectivity using a synthetic catalyst.