Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-(TRIFLUOROMETHOXY)CINNAMIC ACID is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

175675-63-5 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 175675-63-5 Structure
  • Basic information

    1. Product Name: 3-(TRIFLUOROMETHOXY)CINNAMIC ACID
    2. Synonyms: RARECHEM BK HW 0216;TRANS-3-(TRIFLUOROMETHOXY)CINNAMIC ACID;3-(TRIFLUOROMETHOXY)CINNAMIC ACID;(E)-3-(Trifluoromethoxy)-cinnamicacid;(E)-3-(3-Trifluoromethoxyphenyl)-2-propenoic acid;(E)-3-[3-(trifluoromethoxy)phenyl]prop-2-enoic acid
    3. CAS NO:175675-63-5
    4. Molecular Formula: C10H7F3O3
    5. Molecular Weight: 232.16
    6. EINECS: N/A
    7. Product Categories: Fluorine series
    8. Mol File: 175675-63-5.mol
  • Chemical Properties

    1. Melting Point: 92-96 °C(lit.)
    2. Boiling Point: 286℃
    3. Flash Point: 127℃
    4. Appearance: /
    5. Density: 1.403
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: 3-(TRIFLUOROMETHOXY)CINNAMIC ACID(CAS DataBase Reference)
    10. NIST Chemistry Reference: 3-(TRIFLUOROMETHOXY)CINNAMIC ACID(175675-63-5)
    11. EPA Substance Registry System: 3-(TRIFLUOROMETHOXY)CINNAMIC ACID(175675-63-5)
  • Safety Data

    1. Hazard Codes: T
    2. Statements: 25-36/37/38
    3. Safety Statements: 26-36-45
    4. RIDADR: UN 2811 6.1/PG 3
    5. WGK Germany: 3
    6. RTECS:
    7. HazardClass: N/A
    8. PackingGroup: N/A
    9. Hazardous Substances Data: 175675-63-5(Hazardous Substances Data)

175675-63-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 175675-63-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,7,5,6,7 and 5 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 175675-63:
(8*1)+(7*7)+(6*5)+(5*6)+(4*7)+(3*5)+(2*6)+(1*3)=175
175 % 10 = 5
So 175675-63-5 is a valid CAS Registry Number.

175675-63-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-Trifluoromethoxycinnamicacid

1.2 Other means of identification

Product number -
Other names 3-methyl-trans-cinnamic acid ethyl ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:175675-63-5 SDS

175675-63-5Relevant articles and documents

Design, Synthesis, and Anticancer Activity of Cinnamoylated Barbituric Acid Derivatives

Liu, Yue,Li, Peng-Xiao,Mu, Wen-Wen,Sun, Ya-Lei,Liu, Ren-Min,Yang, Jie,Liu, Guo-Yun

, (2022/01/13)

This work deals with the design and synthesis of 18 barbituric acid derivatives bearing 1,3-dimethylbarbituric acid and cinnamic acid scaffolds to find potent anticancer agents. The target molecules were obtained through Knoevenagel condensation and acylation reaction. The cytotoxicity was assessed by the MTT assay. Flowcytometry was performed to determine the cell cycle arrest, apoptosis, ROS levels and the loss of MMP. The ratios of GSH/GSSG and the MDA levels were determined by using UV spectrophotometry. The results revealed that introducing substitutions (CF3, OCF3, F) on the meta- of the benzyl ring of barbituric acid derivatives led to a considerable increase in the antiproliferative activities compared with that of corresponding ortho- and para-substituted barbituric acid derivatives. Mechanism investigation implied that the 1c could increase the ROS and MDA level, decrease the ratio of GSH/GSSG and MMP, and lead to cell cycle arrest. Further research is needed for structural optimization to enhance hydrophilicity, thereby improve the biological activity of these compounds.

Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation

Gong, Pei-Xue,Xu, Fangning,Cheng, Lu,Gong, Xu,Zhang, Jie,Gu, Wei-Jin,Han, Wei

supporting information, p. 5905 - 5908 (2021/06/18)

A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 175675-63-5