17730-78-8Relevant articles and documents
MULTIBIOTIC AGENTS AND METHODS OF USING THE SAME
-
Page/Page column 134, (2019/01/06)
Multibiotic agents are disclosed. The multibiotic agents may contain two or more moieties linked through bonds cleavable in vivo. The bonds cleavable in vivo can be ester bonds, amide bonds, azo bonds, glycosidic bonds, carbonate linkers, or carbamate linkers. The moieties can be alcohol cores, amine cores, and/or acyls. Also disclosed are compositions containing multibiotic agents and methods of using the multibiotic agents.
Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine
Britton, Joshua,Chalker, Justin M.,Raston, Colin L.
supporting information, p. 10660 - 10665 (2015/07/20)
Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines.
Synthesis of amides from esters and amines with liberation of H2 under neutral conditions
Gnanaprakasam, Boopathy,Milstein, David
supporting information; experimental part, p. 1682 - 1685 (2011/04/22)
Efficient synthesis of amides directly from esters and amines is achieved under mild, neutral conditions with the liberation of molecular hydrogen. Both primary and secondary amines can be utilized. This unprecedented, general, environmentally benign reaction is homogeneously catalyzed under neutral conditions by a dearomatized ruthenium-pincer PNN complex and proceeds in toluene under an inert atmosphere with a high turnover number (up to 1000). PNP analogues do not catalyze this transformation, underlining the crucial importance of the amine arm of the pincer ligand. A mechanism is proposed involving metal-ligand cooperation via aromatization-dearomatization of the pyridine moiety and hemilability of the amine arm.