177787-25-6Relevant articles and documents
Novel hetero-cyclic compound and organic light emitting device comprising the same
-
Paragraph 0147-0150, (2019/02/26)
The present invention relates to a novel heterocyclic compound, which is capable of increasing efficiency and lifetime in an organic light emitting device, and an organic light emitting device using the same. The novel heterocyclic compound is represented
Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors
Guo, Jing,Zhao, Fan,Yin, Wenbo,Zhu, Mingyue,Hao, Chenzhou,Pang, Yu,Wu, Tianxiao,Wang, Jian,Zhao, Dongmei,Li, Haitao,Cheng, Maosheng
, p. 197 - 209 (2018/06/12)
We have previously described the identification of indolin-2-one-5-carboxamides as potent PAK4 inhibitors. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds, 2 and 3. A series of novel derivatives was designed, synthesized, and evaluated in biochemical and cellular assay. Most of this series displayed nanomolar biochemical activity and potent antiproliferative activity against A549 and HCT116 cells. The representative compound 10a exhibited excellent enzyme inhibition (PAK4 IC50 = 25 nM) and cellular potency (A549 IC50 = 0.58 μM, HCT116 IC50 = 0.095 μM). An X-ray structure of compound 10a bound to PAK4 was obtained. Crystallographic analysis confirmed predictions from molecular modeling and helped refine SAR results. In addition, Compound 10a displayed focused multi-targeted kinase inhibition, good calculated drug-likeness properties. Further profiling of compound 10a revealed it showed weak inhibitory activity against various isoforms of human cytochrome P450.
N -pyridyl and pyrimidine benzamides as KCNQ2/Q3 potassium channel openers for the treatment of epilepsy
Amato, George,Roeloffs, Rosemarie,Rigdon, Greg C.,Antonio, Brett,Mersch, Theresa,McNaughton-Smith, Grant,Wickenden, Alan D.,Fritch, Paul,Suto, Mark J.
supporting information; experimental part, p. 481 - 484 (2011/08/22)
A series of N-pyridyl benzamide KCNQ2/Q3 potassium channel openers were identified and found to be active in animal models of epilepsy and pain. The best compound 12 [ICA-027243, N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide] has an EC50 of 0.38 μM and is selective for KCNQ2/Q3 channels. This compound was active in several rodent models of epilepsy and pain but upon repeated dosing had a number of unacceptable toxicities that prevented further development. On the basis of the structure-activity relationships developed around 12, a second compound, 51, [N-(2-chloro-pyrimidin-5-yl)-3,4-difluoro- benzamide, ICA-069673], was prepared and advanced into a phase 1 clinical study. Herein, we describe the structure-activity relationships that led to the identification of compound 12 and to the corresponding pyrimidine 51.