Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Epothilone D is a desoxy form of epothilone B, a microtubule-stabilizing agent with potential anti-neoplastic actions. It is a natural macrolide that exhibits high potency in both taxane-sensitive and taxane-resistant cancer models. Epothilone D is known for its ability to stabilize malignant cells' microtubules, arrest mitosis, and inhibit the growth of a variety of cancer cells. It is also brain penetrant, reducing neurodegeneration in aged tau transgenic mice and attenuating nigrostriatal degeneration in a mouse model of Parkinson's disease. Chemically, it is an epithilone C in which the hydrogen at position 13 of the oxacyclohexadec-13-ene-2,6-dione macrocycle has been replaced by a methyl group, and it appears as a white foam.

189453-10-9 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • High quality Oxacyclohexadec-13-ene-2,6-dione, 4,8-dihydroxy-5,5,7,9,13-pentamethyl-16-(1E)-1-methyl-2-(2-methyl-4-thiazolyl)ethenyl-, (4S,7R,8S,9S,13Z,16S)- supplier in China

    Cas No: 189453-10-9

  • No Data

  • 1 Metric Ton

  • 30 Metric Ton/Month

  • Simagchem Corporation
  • Contact Supplier
  • Oxacyclohexadec-13-ene-2,6-dione,4,8-dihydroxy-5,5,7,9,13-pentamethyl-16-[(1E)-1-methyl-2-(2-methyl-4-thiazolyl)ethenyl]-,(4S,7R,8S,9S,13Z,16S)-

    Cas No: 189453-10-9

  • USD $ 100.0-100.0 / Gram

  • 1 Gram

  • 10 Metric Ton/Day

  • HENAN NEW BLUE CHEMICAL CO.,LTD
  • Contact Supplier
  • 189453-10-9 Structure
  • Basic information

    1. Product Name: Epothilone D
    2. Synonyms: Oxacyclohexadec-13-ene-2,6-dione, 4,8-dihydroxy-5,5,7,9,13-pentamethyl-16-(1E)-1-methyl-2-(2-methyl-4-thiazolyl)ethenyl-, (4S,7R,8S,9S,13Z,16S)-;Oxacyclohexadec-13-ene-2,6-dione, 4,8-dihydroxy-5,5,7,9,13-pentamethyl -16-(1-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-, (4S-(4R*,7S,8R*,9R*,1 3Z,16R*(E)))-;(3S,7S,14S,15S,16R)-3,15-Dihydroxy-2,2,10,14,16-pentamethyl-7-[1-(2-methyl-1,3-thiazol-4-yl)prop-1-en-2-yl]-6-oxacyclohexadec-9-ene-1,5-dione;Epothilone D;Desoxyepothilone B;(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentaMethyl-16-[(1E)-1-Methyl-2-(2-Methyl-4-thiazolyl)ethenyl]oxacyclohexadec-13-ene-2,6-dione;12,13-Desoxyepothilone B;Epo D
    3. CAS NO:189453-10-9
    4. Molecular Formula: C27H41NO5S
    5. Molecular Weight: 491.68
    6. EINECS: N/A
    7. Product Categories: Inhibitors;Chiral Reagents;Intermediates & Fine Chemicals;Pharmaceuticals;Sulfur & Selenium Compounds;Anti-cancer&immunity
    8. Mol File: 189453-10-9.mol
  • Chemical Properties

    1. Melting Point: 63-66°C
    2. Boiling Point: 663.658 °C at 760 mmHg
    3. Flash Point: 355.168 °C
    4. Appearance: /
    5. Density: 1.085 g/cm3
    6. Vapor Pressure: 1.62E-18mmHg at 25°C
    7. Refractive Index: 1.522
    8. Storage Temp.: -20°C Freezer
    9. Solubility: Soluble in DMSO
    10. PKA: 13.47±0.70(Predicted)
    11. CAS DataBase Reference: Epothilone D(CAS DataBase Reference)
    12. NIST Chemistry Reference: Epothilone D(189453-10-9)
    13. EPA Substance Registry System: Epothilone D(189453-10-9)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 189453-10-9(Hazardous Substances Data)

189453-10-9 Usage

Uses

Used in Anticancer Applications:
Epothilone D is used as a cytotoxic macrolide for inhibiting cancer cells by a mechanism similar to paclitaxel, making it effective against paclitaxel-resistant tumors as well. It is currently in phase I clinical testing for patients with advanced solid tumors. Epothilones, including Epothilone D, bind to the same hepatic sites as paclitaxel (Taxol) in a 1:1 stoichiometric ratio of α, β-tubulin heterodimers.
Used in Neurodegenerative Disease Applications:
Epothilone D is used as a neuroprotective agent for reducing neurodegeneration in aged tau transgenic mice. It improves axonal transport, decreases tau neuropathology, and reduces hippocampal neuron loss. Additionally, it rescues microtubule defects and attenuates nigrostriatal degeneration in a mouse model of Parkinson's disease.

in vitro

epothilone d is a more potent microtubule stabilizer in vitro than epothilone a or b. in vitro, epothilone d showed potent cytotoxicity in a panel of human tumor cell lines, with similar potency to paclitaxel. it also showed definite advantage over paclitaxel in drug-resistant cell lines, and retained its cytotoxicity against a multidrug resistant cell line over-expressing p-glycoprotein [1].

in vivo

in vivo, antitumor efficacy of epothilone d has been observed in both paclitaxel sensitive and resistant xenografts, as well as certain multidrug resistant xenografts including a doxorubinresistant ccrf-cem leukemic cell xenograft [1].

IC 50

2.9 nm for mcf-7 cell line; 2.7 nm for kb-31 cell line; 9.5 nm for ccrf-cem cell line

references

[1] konner j, grisham rn, park j, o'connor oa, cropp g, johnson r, hannah al, hensley ml, sabbatini p, mironov s, danishefsky s, hyman d, spriggs dr, dupont j, aghajanian c. phase i clinical, pharmacokinetic, and pharmacodynamic study of kos-862 (epothilone d) in patients with advanced solid tumors and lymphoma. invest new drugs. 2012 dec;30(6):2294-302. doi: 10.1007/s10637-011-9765-7.

Check Digit Verification of cas no

The CAS Registry Mumber 189453-10-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,8,9,4,5 and 3 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 189453-10:
(8*1)+(7*8)+(6*9)+(5*4)+(4*5)+(3*3)+(2*1)+(1*0)=169
169 % 10 = 9
So 189453-10-9 is a valid CAS Registry Number.
InChI:InChI=1/C27H41NO5S/c1-16-9-8-10-17(2)25(31)19(4)26(32)27(6,7)23(29)14-24(30)33-22(12-11-16)18(3)13-21-15-34-20(5)28-21/h11,13,15,17,19,22-23,25,29,31H,8-10,12,14H2,1-7H3/b16-11-,18-13+/t17-,19+,22?,23-,25-/m0/s1

189453-10-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name epothilone D

1.2 Other means of identification

Product number -
Other names Epothilones

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:189453-10-9 SDS

189453-10-9Synthetic route

12,13-deoxy-3-(triethylsilyloxy)epothilone B
241129-41-9

12,13-deoxy-3-(triethylsilyloxy)epothilone B

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With pyridine hydrogenfluoride In tetrahydrofuran98%
With pyridine hydrogenfluoride In tetrahydrofuran at 0℃; for 5h;91%
(4S,7R,8S,9S,13Z,16S)-4,8-bis{[tert-butyl(dimethyl)silyl]oxy}-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]oxacyclohexadec-13-ene-2,6-dione
189453-35-8

(4S,7R,8S,9S,13Z,16S)-4,8-bis{[tert-butyl(dimethyl)silyl]oxy}-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]oxacyclohexadec-13-ene-2,6-dione

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With pyridine hydrogenfluoride In tetrahydrofuran at 20℃; for 36h;96%
With pyridine; pyridine hydrogenfluoride In tetrahydrofuran at 0 - 20℃; for 36h;96%
With pyridine hydrogenfluoride In tetrahydrofuran92%
(13Z,4S,7R,8S,9S,16S)-4-(tert-butyldimethylsilyloxy)-8-hydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methylthiazol-4-yl)vinyl]oxacyclohexadec-13-ene-2,6-dione
219823-99-1

(13Z,4S,7R,8S,9S,16S)-4-(tert-butyldimethylsilyloxy)-8-hydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methylthiazol-4-yl)vinyl]oxacyclohexadec-13-ene-2,6-dione

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With pyridine hydrogenfluoride In tetrahydrofuran at 20℃; for 16h;95%
With trifluoroacetic acid In dichloromethane at 0℃; for 1.5h;69%
(Z)-(4S,6R,7S,8S,9S,16S)-8-(tert-Butyl-dimethyl-silanyloxy)-4,6-dihydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-en-2-one
189453-51-8

(Z)-(4S,6R,7S,8S,9S,16S)-8-(tert-Butyl-dimethyl-silanyloxy)-4,6-dihydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-en-2-one

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With pyridine hydrogenfluoride In tetrahydrofuran at 0 - 20℃; for 2h; desilylation;92%
Multi-step reaction with 3 steps
1: 89 percent / 2,6-lutidine / CH2Cl2 / -30 °C
2: 67 percent / Dess-Martin periodinane / CH2Cl2 / Ambient temperature
3: 80 percent / HF*pyridine / tetrahydrofuran / Ambient temperature
View Scheme
Carbonic acid (Z)-(4S,7R,8S,9S,16S)-4-hydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 2,2,2-trichloro-ethyl ester
380605-94-7

Carbonic acid (Z)-(4S,7R,8S,9S,16S)-4-hydroxy-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 2,2,2-trichloro-ethyl ester

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With ammonium chloride; zinc In methanol Heating;92%
(E)-9,10-dehydro-12,13-desoxyepothilone B
350493-61-7

(E)-9,10-dehydro-12,13-desoxyepothilone B

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With TrisNHNH2; triethylamine In 1,2-dichloro-ethane at 50℃; for 7h;91%
With TrisNHNH2; triethylamine In 1,2-dichloro-ethane at 50℃; for 7h;91%
With potassium diazodicarboxylate; acetic acid In 1,2-dichloro-ethane at 45℃;60%
10,11-didehydroepothilone D
371979-40-7

10,11-didehydroepothilone D

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With potassium diazodicarboxylate; acetic acid In dichloromethane Heating;86%
epothilone B
152044-54-7

epothilone B

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With n-butyllithium; tungsten(VI) chloride In tetrahydrofuran deoxygenation;78%
7-[(1E)-1-methyl-2-(2-methyl(1,3-thiazol-4-yl))vinyl]-(3S,7S,14S,15S,16R)-3,15-dihydroxy-2,2,10,14,16-pentamethyl-6-oxacyclohexadeca-9,12-diene-1,5-dione
220889-57-6

7-[(1E)-1-methyl-2-(2-methyl(1,3-thiazol-4-yl))vinyl]-(3S,7S,14S,15S,16R)-3,15-dihydroxy-2,2,10,14,16-pentamethyl-6-oxacyclohexadeca-9,12-diene-1,5-dione

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
With trisylhydrazine; triethylamine In diethyl ether at 39℃;71%
With trisylhydrazine; triethylamine In 1,2-dichloro-ethane at 50℃; for 18h;70%
With potassium diazodicarboxylate; acetic acid In dichloromethane for 24h; Heating;52%
With potassium diazodicarboxylate; acetic acid In dichloromethane for 25h; Heating;52%
(Z)-(4S,7R,8S,9S,16S)-4,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione
204195-20-0

(Z)-(4S,7R,8S,9S,16S)-4,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione

A

epothilone D
189453-10-9

epothilone D

B

E-epothilone D
189453-40-5

E-epothilone D

Conditions
ConditionsYield
With pyridine hydrogenfluoride In tetrahydrofuran at 20℃; for 1.5h; desilylation;
With trifluoroacetic acid In dichloromethane at 0 - 20℃;
With pyridine; hydrogen fluoride In tetrahydrofuran at 20℃;
(3S,6R,7S,8S,12Z,15S,16E)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-15-(2-trimethylsilylethoxymethoxy)-4,4,6,8,12,16-hexamethyl-17-(2-methyl-1,3-thiazol-4-yl)-5-oxoheptadeca-12,16-dienoic acid
823789-81-7

(3S,6R,7S,8S,12Z,15S,16E)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-15-(2-trimethylsilylethoxymethoxy)-4,4,6,8,12,16-hexamethyl-17-(2-methyl-1,3-thiazol-4-yl)-5-oxoheptadeca-12,16-dienoic acid

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 7 steps
1.1: pyridine / CH2Cl2 / 1 h / 0 °C
2.1: CH2Cl2 / 5 h / 20 °C
3.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
4.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
5.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
5.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
6.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
7.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
(12Z,16E)-(3S,6R,7S,8S,15S)-3-(tert-Butyl-dimethyl-silanyloxy)-15-hydroxy-4,4,6,8,12,16-hexamethyl-17-(2-methyl-thiazol-4-yl)-5-oxo-7-(2,2,2-trichloro-ethoxycarbonyloxy)-heptadeca-12,16-dienoic acid
380605-92-5

(12Z,16E)-(3S,6R,7S,8S,15S)-3-(tert-Butyl-dimethyl-silanyloxy)-15-hydroxy-4,4,6,8,12,16-hexamethyl-17-(2-methyl-thiazol-4-yl)-5-oxo-7-(2,2,2-trichloro-ethoxycarbonyloxy)-heptadeca-12,16-dienoic acid

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
1.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
2.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
3.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
C45H85NO7SSi3

C45H85NO7SSi3

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 6 steps
1.1: CH2Cl2 / 5 h / 20 °C
2.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
3.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
4.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
4.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
5.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
6.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
(3S,6R,7S,8S,12Z,15S,16E)-3-(tert-butyldimethylsilyloxy)-7-[(2,2,2-trichloroethoxycarbonyl)oxy]-15-(2-trimethylsilylethoxymethoxy)-4,4,6,8,12,16-hexamethyl-17-(2-methyl-1,3-thiazol-4-yl)-5-oxoheptadeca-12,16-dienoic acid
823789-87-3

(3S,6R,7S,8S,12Z,15S,16E)-3-(tert-butyldimethylsilyloxy)-7-[(2,2,2-trichloroethoxycarbonyl)oxy]-15-(2-trimethylsilylethoxymethoxy)-4,4,6,8,12,16-hexamethyl-17-(2-methyl-1,3-thiazol-4-yl)-5-oxoheptadeca-12,16-dienoic acid

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
2.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
2.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
3.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
4.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
C48H86Cl3NO9SSi3

C48H86Cl3NO9SSi3

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 5 steps
1.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
2.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
3.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
3.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
4.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
5.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
4-(hydroxymethyl)-2-methylthiazole
76632-23-0

4-(hydroxymethyl)-2-methylthiazole

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 13 steps
1.1: 85 percent / Ph3P; CBr4 / CCl4 / 3 h / 20 °C
2.1: 86 percent / 3 h / 160 °C
3.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
3.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
4.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
4.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
5.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
6.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
6.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
7.1: pyridine / CH2Cl2 / 1 h / 0 °C
8.1: CH2Cl2 / 5 h / 20 °C
9.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
10.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
11.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
11.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
12.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
13.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
4-(chloromethyl)-2-methyl-1,3-thiazole
39238-07-8

4-(chloromethyl)-2-methyl-1,3-thiazole

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 12 steps
1.1: 86 percent / 6 h / 160 °C
2.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
2.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
3.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
3.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
4.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
5.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
5.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
6.1: pyridine / CH2Cl2 / 1 h / 0 °C
7.1: CH2Cl2 / 5 h / 20 °C
8.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
9.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
10.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
10.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
11.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
12.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 11 steps
1.1: 84 percent / 2 h / 165 °C
2.1: tBuOK / tetrahydrofuran
2.2: 75 percent / tetrahydrofuran / 4 h / -30 - 20 °C
3.1: AcOH; H2O / tetrahydrofuran / 24 h / 20 °C
4.1: NaBH4 / methanol
5.1: CBr4; PPh3 / acetonitrile / 0 °C
5.2: 91 percent / 2,6-di-tert-butyl-4-methylpyridine / acetonitrile / -40 °C
6.1: tetrahydrofuran / -78 °C
7.1: LiHMDS / tetrahydrofuran / -78 °C
7.2: 80 percent / tetrahydrofuran
8.1: TMSOTf; collidine / CH2Cl2 / 1 h / 0 °C
8.2: 85 percent / nBu4NF / tetrahydrofuran
9.1: 2,4,6-trichlorobenzoyl chloride; Et3N / tetrahydrofuran / 1 h / 20 °C
9.2: 60 percent / DMAP / toluene / 80 °C
10.1: 86 percent / TFA / CH2Cl2 / 0 °C
11.1: 71 percent / 2,4,6-triisopropylbenzenesulfonyl hydrazide; Et3N / diethyl ether / 39 °C
View Scheme
Multi-step reaction with 18 steps
1.1: 97 percent / benzene / 8 h / Heating
2.1: 10.95 g / LiHMDS / tetrahydrofuran / 0.67 h / 55 °C
3.1: oxalyl chloride; DMSO; DIPEA / CH2Cl2 / -78 - 20 °C
4.1: KHMDS; 18-crown-6 / tetrahydrofuran / 0.25 h
4.2: 5.45 g / tetrahydrofuran / 0.5 h / -78 °C
5.1: 98 percent / DIBALH / tetrahydrofuran; heptane / 2.5 h / 0 °C
6.1: Ph3P; imidazole; I2 / acetonitrile; diethyl ether / 1 h / 20 °C
7.1: 18-crown-6; KHMDS / tetrahydrofuran / 1 h / -78 °C
7.2: 93 percent / tetrahydrofuran / 1 h / -78 °C
8.1: 65 percent / Na2HPO4; Na-Hg amalgam / methanol; tetrahydrofuran / -15 - 20 °C
9.1: 99 percent / CSA / methanol; CH2Cl2 / 5 h / 0 - 10 °C
10.1: Dess-Martin periodinane; pyridine / CH2Cl2 / 4 h / 20 °C
11.1: LDA / tetrahydrofuran / 1 h / -78 - -35 °C
11.2: tetrahydrofuran / 1.5 h / -95 - -80 °C
12.1: 99 percent / 2,6-lutidine / CH2Cl2 / 3 h / 0 °C
13.1: 87 percent / CSA / methanol; CH2Cl2 / 4 h / 0 °C
14.1: Dess-Martin periodinane; Py / CH2Cl2 / 2 h / 20 °C
15.1: 380 mg / NaClO2; NaH2PO4 / 2-methyl-propan-2-ol; various solvent(s); H2O / 3 h
16.1: 55 percent / TBAF / tetrahydrofuran / 10 h / 20 °C
17.1: 69 percent / N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide *HCl; DMAP; DMAP*HCl / CHCl3 / 17 h / Heating
18.1: 96 percent / HF*Py; Py / tetrahydrofuran / 36 h / 0 - 20 °C
View Scheme
Multi-step reaction with 3 steps
1.1: 4 h / Reflux
2.1: potassium hexamethylsilazane / tetrahydrofuran / 0.25 h / 0 °C
2.2: 2 h / -78 - -20 °C
3.1: trifluoroacetic acid / dichloromethane / 1 h / 0 °C
View Scheme
ethyl 2-methylthiazole-4-carboxylate
6436-59-5

ethyl 2-methylthiazole-4-carboxylate

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 14 steps
1.1: 84 percent / LiAlH4 / diethyl ether / 3 h / -78 °C
2.1: 85 percent / Ph3P; CBr4 / CCl4 / 3 h / 20 °C
3.1: 86 percent / 3 h / 160 °C
4.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
4.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
5.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
5.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
6.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
7.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
7.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
8.1: pyridine / CH2Cl2 / 1 h / 0 °C
9.1: CH2Cl2 / 5 h / 20 °C
10.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
11.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
12.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
12.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
13.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
14.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 23 steps
1: 90 percent / DIBAL / CH2Cl2 / 1 h / -78 °C
2: 98 percent / benzene / 2 h / Heating
3: 74 percent / diethyl ether; pentane / 1 h / -100 °C
4: 99 percent / imidazole / dimethylformamide / 1) 0 deg C, 45 min, 2) 25 deg C, 2.5 h
5: 95 percent / 4-methylmorpholine N-oxide, OsO4 / tetrahydrofuran; 2-methyl-propan-2-ol; H2O / 1) 0 deg C, 2.5 h, 2) 25 deg C, 12 h
6: 98 percent / Pb(OAc)4 / ethyl acetate / 0.25 h / 0 °C
7: 95 percent / benzene / 3 h / Heating
8: 98 percent / DIBAL / tetrahydrofuran; CH2Cl2 / 3 h / -78 °C
9: 83 percent / Ph3P, CCl4 / 24 h / 100 °C
10: 99 percent / LiEt3BH / tetrahydrofuran / 1 h / 0 °C
11: 91 percent / 9-BBN / tetrahydrofuran / 2 h / 0 °C
12: 92 percent / I2, imidazole, Ph3P / diethyl ether; acetonitrile / 0.5 h / 0 °C
13: 1) LDA / 1) THF, 0 deg C, 8 h, 2) THF, -100 deg C -> -20 deg C, 10 h
14: 80 percent / monoperoxyphthalic acid magnesium salt / methanol / 1 h / 0 °C
15: 82 percent / DIBAL / toluene / 1 h / -78 °C
16: 1) LDA / 1) THF, -78 deg C, 15 min; -78 deg C -> -40 deg C, 1 h, 2) THF, -78 deg C, 15 min
17: 96 percent / 2,6-lutidine / CH2Cl2 / 2 h / 0 °C
18: 85 percent / camphorsulfonic acid / CH2Cl2; methanol / 0.5 h / 0 - 25 °C
19: 1) (COCl)2, DMSO, 2) Et3N / 1) CH2Cl2, -78 deg C, 30 min, 2) CH2Cl2, -78 deg C -> 0 deg C, 30 min
20: 90 percent / NaClO2, isobutylene, NaH2PO4 / 2-methyl-propan-2-ol; H2O; tetrahydrofuran / 1 h / Ambient temperature
21: 73 percent / TBAF / tetrahydrofuran / 8 h / 25 °C
22: 1) Et3N, 2,4,6-trichlorobenzoyl chloride, 2) 4-DMAP / 1) THF, 25 deg C, 15 min, 2) toluene, 25 deg C, 12 h
23: 91 percent / CF3CO2H / CH2Cl2 / 1) -20 deg C -> 0 deg C, 2) 0 deg C, 1 h
View Scheme
diethyl (2-methyl-1,3-thiazol-4-yl)methylphosphonate
63928-37-0

diethyl (2-methyl-1,3-thiazol-4-yl)methylphosphonate

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 11 steps
1.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
1.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
2.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
2.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
3.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
4.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
4.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
5.1: pyridine / CH2Cl2 / 1 h / 0 °C
6.1: CH2Cl2 / 5 h / 20 °C
7.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
8.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
9.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
9.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
10.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
11.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 10 steps
1.1: tBuOK / tetrahydrofuran
1.2: 75 percent / tetrahydrofuran / 4 h / -30 - 20 °C
2.1: AcOH; H2O / tetrahydrofuran / 24 h / 20 °C
3.1: NaBH4 / methanol
4.1: CBr4; PPh3 / acetonitrile / 0 °C
4.2: 91 percent / 2,6-di-tert-butyl-4-methylpyridine / acetonitrile / -40 °C
5.1: tetrahydrofuran / -78 °C
6.1: LiHMDS / tetrahydrofuran / -78 °C
6.2: 80 percent / tetrahydrofuran
7.1: TMSOTf; collidine / CH2Cl2 / 1 h / 0 °C
7.2: 85 percent / nBu4NF / tetrahydrofuran
8.1: 2,4,6-trichlorobenzoyl chloride; Et3N / tetrahydrofuran / 1 h / 20 °C
8.2: 60 percent / DMAP / toluene / 80 °C
9.1: 86 percent / TFA / CH2Cl2 / 0 °C
10.1: 71 percent / 2,4,6-triisopropylbenzenesulfonyl hydrazide; Et3N / diethyl ether / 39 °C
View Scheme
Multi-step reaction with 11 steps
1: 74 percent / n-BuLi
2: DIBAL-H
3: Dess-Martin periodinane
4: 67 percent / Li(i-Pr)2N / -78 °C
5: 79 percent / Cl2CHCO2H
6: Dess-Martin periodinane
7: NaClO2
8: MgBr2; n-BuSH; K2CO3
9: 62 percent / 2,4,6-trichlorobenzoyl chloride; DMAP
10: 91 percent / CF3CO2H / CH2Cl2
View Scheme
2,2-dimethyl-3-oxopentanal
106921-60-2

2,2-dimethyl-3-oxopentanal

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 11 steps
1.1: 88 percent / Bu2BOTf; DIPEA / CH2Cl2 / 1 h / -78 °C
2.1: 95 percent / 2,6-lutidine / CH2Cl2 / 1 h / 0 °C
3.1: 76 percent / lithium hydroxide; hydrogen peroxide / tetrahydrofuran; H2O / 4 h / 20 °C
4.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
4.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
5.1: pyridine / CH2Cl2 / 1 h / 0 °C
6.1: CH2Cl2 / 5 h / 20 °C
7.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
8.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
9.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
9.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
10.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
11.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 14 steps
1.1: 68 percent / (-)-Ipc2BOMe / diethyl ether / -100 °C
2.1: i-Pr2NH; n-BuLi / tetrahydrofuran; hexane / 0.83 h / -78 °C
2.2: 61 percent / tetrahydrofuran; hexane / 0.5 h / -78 °C
3.1: 89 percent / Et3N / CH2Cl2 / 0.75 h / 0 °C
4.1: OsO4; NaIO4 / tetrahydrofuran; H2O / 18 h
5.1: NaClO2; NaH2PO4; 2-methyl-2-butene / 2-methyl-propan-2-ol; H2O / 1 h
6.1: 502 mg / methanol; benzene; hexane / 0.75 h
7.1: 92 percent / H2 / Pd/C / ethanol / 0.75 h
8.1: 99 percent / TPAP; NMO / CH2Cl2 / 1 h
9.1: hexamethyldisilazane; n-BuLi / tetrahydrofuran; hexane / -78 - -30 °C
9.2: 82 percent / tetrahydrofuran; hexane / 70 h / -78 - 20 °C
10.1: 66 percent / aq. NaOH / propan-2-ol / 16 h / 45 °C
11.1: 89 percent / TBAF / tetrahydrofuran / 16 h / 0 - 25 °C
12.1: 1,3,5-Cl3C6H2COCl; Et3N / tetrahydrofuran / 0.75 h / 0 °C
12.2: 63 percent / DMAP / toluene; tetrahydrofuran / 4.5 h / 75 °C
13.1: 83 percent / TFA / CH2Cl2 / 4.5 h / 0 °C
14.1: 52 percent / KO2CN=NCO2K; AcOH / CH2Cl2 / 25 h / Heating
View Scheme
Multi-step reaction with 16 steps
1.1: 68 percent / (-)-Ipc2BOMe / diethyl ether / -100 °C
2.1: i-Pr2NH; n-BuLi / tetrahydrofuran; hexane / 0.83 h / -78 °C
2.2: 61 percent / tetrahydrofuran; hexane / 0.5 h / -78 °C
3.1: 89 percent / Et3N / CH2Cl2 / 0.75 h / 0 °C
4.1: OsO4; NaIO4 / tetrahydrofuran; H2O / 18 h
5.1: NaClO2; NaH2PO4; 2-methyl-2-butene / 2-methyl-propan-2-ol; H2O / 1 h
6.1: 502 mg / methanol; benzene; hexane / 0.75 h
7.1: 92 percent / H2 / Pd/C / ethanol / 0.75 h
8.1: 99 percent / TPAP; NMO / CH2Cl2 / 1 h
9.1: t-BuOK / tetrahydrofuran / 5 h / -78 °C
9.2: 80 percent / tetrahydrofuran / 12 h / -78 °C
10.1: CuI; Et3N / diethyl ether; dimethylformamide / 20 °C
10.2: 60 percent / diethyl ether; dimethylformamide / 18 h / 20 °C
11.1: 68 percent / H2; Pb(OAc)2 / Pd/CaCO3 / hexane / 28 h / 20 °C
12.1: 66 percent / aq. NaOH / propan-2-ol / 16 h / 45 °C
13.1: 89 percent / TBAF / tetrahydrofuran / 16 h / 0 - 25 °C
14.1: 1,3,5-Cl3C6H2COCl; Et3N / tetrahydrofuran / 0.75 h / 0 °C
14.2: 63 percent / DMAP / toluene; tetrahydrofuran / 4.5 h / 75 °C
15.1: 83 percent / TFA / CH2Cl2 / 4.5 h / 0 °C
16.1: 52 percent / KO2CN=NCO2K; AcOH / CH2Cl2 / 25 h / Heating
View Scheme
Multi-step reaction with 6 steps
1.1: Bu2BOTf; DIPEA / CH2Cl2 / -78 - 0 °C
1.2: 70 percent / Raney Ni / acetone / 0.75 h / 60 °C
2.1: 2,6-lutidine / CH2Cl2 / 0 - 20 °C
2.2: LiOH; H2O2 / tetrahydrofuran; H2O / 20 °C
3.1: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
4.1: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
5.1: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
Multi-step reaction with 13 steps
1: 74 percent / diethyl ether / 0.5 h / -100 °C
2: 98 percent / 2,6-lutidine / CH2Cl2 / 0.75 h / -78 °C
3: 1) O3, 2) PPh3 / 1) CH2Cl2, -78 deg C, 30 min, 2) Ch2Cl2, -78 deg C -> room temperature; room temperature, 1 h
4: lithium tri-tert-butoxyaluminohydride / tetrahydrofuran / 1) -78 deg C, 5 min, 2) 0 deg C, 15 min
5: 1.26 g / Et3N, 4-DMAP / CH2Cl2 / 1) 0 deg C, 2 h, 2) 25 deg C, 10 h
6: 1) LDA / 1) THF, -78 deg C, 15 min; -78 deg C -> -40 deg C, 1 h, 2) THF, -78 deg C, 15 min
7: 96 percent / 2,6-lutidine / CH2Cl2 / 2 h / 0 °C
8: 85 percent / camphorsulfonic acid / CH2Cl2; methanol / 0.5 h / 0 - 25 °C
9: 1) (COCl)2, DMSO, 2) Et3N / 1) CH2Cl2, -78 deg C, 30 min, 2) CH2Cl2, -78 deg C -> 0 deg C, 30 min
10: 90 percent / NaClO2, isobutylene, NaH2PO4 / 2-methyl-propan-2-ol; H2O; tetrahydrofuran / 1 h / Ambient temperature
11: 73 percent / TBAF / tetrahydrofuran / 8 h / 25 °C
12: 1) Et3N, 2,4,6-trichlorobenzoyl chloride, 2) 4-DMAP / 1) THF, 25 deg C, 15 min, 2) toluene, 25 deg C, 12 h
13: 91 percent / CF3CO2H / CH2Cl2 / 1) -20 deg C -> 0 deg C, 2) 0 deg C, 1 h
View Scheme
(S)-3-((tert-butyldimethylsilyl)oxy)-4,4-dimethyl-5-oxoheptanoic acid
187283-45-0

(S)-3-((tert-butyldimethylsilyl)oxy)-4,4-dimethyl-5-oxoheptanoic acid

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 8 steps
1.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
1.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
2.1: pyridine / CH2Cl2 / 1 h / 0 °C
3.1: CH2Cl2 / 5 h / 20 °C
4.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
5.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
6.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
6.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
7.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
8.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 4 steps
1: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
2: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
3: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
Multi-step reaction with 5 steps
1.1: titanium tetrachloride / dichloromethane / 0.08 h / -78 °C / Inert atmosphere
1.2: 1 h / -78 °C / Inert atmosphere
1.3: 3 h / -78 - 20 °C / Inert atmosphere
2.1: 2,6-dimethylpyridine / dichloromethane / 0 - 20 °C / Inert atmosphere
3.1: tetrabutyl ammonium fluoride / tetrahydrofuran / 0.17 h / 20 °C / Inert atmosphere
4.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 0.67 h / 0 °C / Inert atmosphere
4.2: 20 °C / Inert atmosphere
5.1: trifluoroacetic acid / dichloromethane / 0.75 h / 0 °C / Inert atmosphere
View Scheme
Multi-step reaction with 5 steps
1.1: dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride / dichloromethane / 2 h / 20 °C / Inert atmosphere
2.1: titanium tetrachloride; N-ethyl-N,N-diisopropylamine / dichloromethane / 1 h / -78 °C / Inert atmosphere
2.2: 15 h / -12 °C / Inert atmosphere
3.1: 2,6-dimethylpyridine / dichloromethane / 5 h / -45 - 20 °C / Inert atmosphere
4.1: Hoveyda-Grubbs catalyst second generation / 1,2-dichloro-ethane / 4 h / 80 °C / Inert atmosphere
5.1: trifluoroacetic acid / dichloromethane / 2 h / -20 - 0 °C / Inert atmosphere
View Scheme
Multi-step reaction with 6 steps
1: phenyltrimethylammonium tribromide / tetrahydrofuran / 1.25 h / 0 - 20 °C
2: dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride / dichloromethane / 18 h / 0 - 20 °C / Inert atmosphere
3: (1S)-10-camphorsulfonic acid / dichloromethane; methanol / 2.5 h / 0 °C
4: triethylamine; sulfur trioxide pyridine complex; dimethyl sulfoxide / dichloromethane / 1 h / 0 °C / Inert atmosphere
5: lithium iodide; chromium dichloride / tetrahydrofuran / 3.33 h / 20 °C / Inert atmosphere
6: trifluoroacetic acid / dichloromethane / 1.5 h / 0 °C
View Scheme
(-)-(2R,3S,5Z)-2-(4-methoxybenzyloxy)-6,10-dimethylundeca-5,10-dien-3-ol
380605-86-7

(-)-(2R,3S,5Z)-2-(4-methoxybenzyloxy)-6,10-dimethylundeca-5,10-dien-3-ol

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 14 steps
1.1: 92 percent / DIPEA / CH2Cl2 / 6 h / 20 °C
2.1: 91 percent / 2,3-dichloro-5,6-dicyano-1,4-benzoquinone / CH2Cl2; H2O / 3 h / 20 °C
3.1: 85 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
4.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
4.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
5.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
5.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
6.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
7.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
7.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
8.1: pyridine / CH2Cl2 / 1 h / 0 °C
9.1: CH2Cl2 / 5 h / 20 °C
10.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
11.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
12.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
12.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
13.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
14.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 10 steps
1: 92 percent / DIPEA; DCM / 0 °C
2: 88 percent / DDQ / H2O
3: 85 percent / DMSO; (COCl)2; DCM / triethylamine / -78 °C
4: 72 percent / n-BuLi / tetrahydrofuran
5: (i-PC)2BH; aq. sodium borate / tetrahydrofuran / 0.5 h
6: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
7: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
8: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
9: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
(Z)-(S)-6,10-Dimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-5,10-dien-2-one
380605-89-0

(Z)-(S)-6,10-Dimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-5,10-dien-2-one

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 11 steps
1.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
1.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
2.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
2.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
3.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
4.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
4.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
5.1: pyridine / CH2Cl2 / 1 h / 0 °C
6.1: CH2Cl2 / 5 h / 20 °C
7.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
8.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
9.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
9.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
10.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
11.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 7 steps
1: 72 percent / n-BuLi / tetrahydrofuran
2: (i-PC)2BH; aq. sodium borate / tetrahydrofuran / 0.5 h
3: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
4: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
5: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
6: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
(Z)-(2R,3S)-6,10-Dimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-5,10-dien-2-ol
380605-88-9

(Z)-(2R,3S)-6,10-Dimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-5,10-dien-2-ol

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 12 steps
1.1: 85 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
2.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
2.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
3.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
3.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
4.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
5.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
5.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
6.1: pyridine / CH2Cl2 / 1 h / 0 °C
7.1: CH2Cl2 / 5 h / 20 °C
8.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
9.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
10.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
10.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
11.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
12.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 8 steps
1: 85 percent / DMSO; (COCl)2; DCM / triethylamine / -78 °C
2: 72 percent / n-BuLi / tetrahydrofuran
3: (i-PC)2BH; aq. sodium borate / tetrahydrofuran / 0.5 h
4: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
5: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
6: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
7: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
(2-{1-[1-(4-methoxy-benzyloxy)-ethyl]-4,8-dimethyl-nona-3,8-dienyloxymethoxy}-ethyl)-trimethyl-silane
380605-87-8

(2-{1-[1-(4-methoxy-benzyloxy)-ethyl]-4,8-dimethyl-nona-3,8-dienyloxymethoxy}-ethyl)-trimethyl-silane

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 13 steps
1.1: 91 percent / 2,3-dichloro-5,6-dicyano-1,4-benzoquinone / CH2Cl2; H2O / 3 h / 20 °C
2.1: 85 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
3.1: n-butyllithium / tetrahydrofuran; hexane / 1 h / -78 °C
3.2: 86 percent / tetrahydrofuran; hexane / 12 h / -78 - 20 °C
4.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
4.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
5.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
6.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
6.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
7.1: pyridine / CH2Cl2 / 1 h / 0 °C
8.1: CH2Cl2 / 5 h / 20 °C
9.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
10.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
11.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
11.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
12.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
13.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 9 steps
1: 88 percent / DDQ / H2O
2: 85 percent / DMSO; (COCl)2; DCM / triethylamine / -78 °C
3: 72 percent / n-BuLi / tetrahydrofuran
4: (i-PC)2BH; aq. sodium borate / tetrahydrofuran / 0.5 h
5: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
6: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
7: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
8: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
2-methyl-4-[2,6,10-trimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-1,5,10-trienyl]-thiazole
380605-90-3

2-methyl-4-[2,6,10-trimethyl-3-(2-trimethylsilanyl-ethoxymethoxy)-undeca-1,5,10-trienyl]-thiazole

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 10 steps
1.1: (1R)-(+)-pinene; BH3*DMS / tetrahydrofuran / 0.5 h / 20 °C
1.2: 78 percent / lithium hydroxide; sodium perborate / tetrahydrofuran; H2O / 2 h / 20 °C
2.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
3.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
3.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
4.1: pyridine / CH2Cl2 / 1 h / 0 °C
5.1: CH2Cl2 / 5 h / 20 °C
6.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
7.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
8.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
8.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
9.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
10.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 6 steps
1: (i-PC)2BH; aq. sodium borate / tetrahydrofuran / 0.5 h
2: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
3: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
4: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
5: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
Carbonic acid (Z)-(4S,7R,8S,9S,16S)-4-(tert-butyl-dimethyl-silanyloxy)-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 2,2,2-trichloro-ethyl ester
380605-93-6

Carbonic acid (Z)-(4S,7R,8S,9S,16S)-4-(tert-butyl-dimethyl-silanyloxy)-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 2,2,2-trichloro-ethyl ester

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
2: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 2 steps
1: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
2: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
(+)-(2S,6Z,9S,10E)-2,6,10-trimethyl-11-(2-methyl-1,3-thiazol-4-yl)-9-(2-trimethylsilylethoxymethoxy)undeca-6,10-dienal
380605-84-5

(+)-(2S,6Z,9S,10E)-2,6,10-trimethyl-11-(2-methyl-1,3-thiazol-4-yl)-9-(2-trimethylsilylethoxymethoxy)undeca-6,10-dienal

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 8 steps
1.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
1.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
2.1: pyridine / CH2Cl2 / 1 h / 0 °C
3.1: CH2Cl2 / 5 h / 20 °C
4.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
5.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
6.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
6.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
7.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
8.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 8 steps
1: 67 percent / Li(i-Pr)2N / -78 °C
2: 79 percent / Cl2CHCO2H
3: Dess-Martin periodinane
4: NaClO2
5: MgBr2; n-BuSH; K2CO3
6: 62 percent / 2,4,6-trichlorobenzoyl chloride; DMAP
7: 91 percent / CF3CO2H / CH2Cl2
View Scheme
Multi-step reaction with 4 steps
1: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
2: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
3: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
Multi-step reaction with 8 steps
1.1: lithium diisopropyl amide; n-butyllithium / tetrahydrofuran; hexane / 1.5 h / -78 - 40 °C
1.2: 0.03 h / -78 °C
2.1: 2,6-dimethylpyridine / dichloromethane / 6 h / 0 °C
3.1: dichloro-acetic acid / dichloromethane / 2 h / 20 °C
4.1: Dess-Martin periodane / dichloromethane / 0.5 h / 20 °C
5.1: sodium chlorite; sodium dihydrogenphosphate; 2,3-Dimethyl-2-butene / tetrahydrofuran; water; tert-butyl alcohol / 1 h / 20 °C
6.1: potassium carbonate; magnesium bromide ethyl etherate; n-butanethiol / diethyl ether / 2 h / 20 °C
7.1: triethylamine; 2,4,6-trichlorobenzoyl chloride / tetrahydrofuran / 0.75 h / 0 °C
7.2: 5 h / 75 °C
8.1: trifluoroacetic acid / dichloromethane / 6 h / 0 °C
View Scheme
(2S,9S,6Z,10E)-2,6,10-trimethyl-11-(2-methyl-1,3-thiazol-4-yl)-9-(2-trimethylsilylethoxy)methoxyundeca-6,10-dien-1-ol
380605-91-4

(2S,9S,6Z,10E)-2,6,10-trimethyl-11-(2-methyl-1,3-thiazol-4-yl)-9-(2-trimethylsilylethoxy)methoxyundeca-6,10-dien-1-ol

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 9 steps
1.1: 94 percent / oxalyl chloride; DMSO; triethylamine / CH2Cl2 / -78 - 0 °C
2.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
2.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
3.1: pyridine / CH2Cl2 / 1 h / 0 °C
4.1: CH2Cl2 / 5 h / 20 °C
5.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
6.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
7.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
7.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
8.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
9.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 9 steps
1: Dess-Martin periodinane
2: 67 percent / Li(i-Pr)2N / -78 °C
3: 79 percent / Cl2CHCO2H
4: Dess-Martin periodinane
5: NaClO2
6: MgBr2; n-BuSH; K2CO3
7: 62 percent / 2,4,6-trichlorobenzoyl chloride; DMAP
8: 91 percent / CF3CO2H / CH2Cl2
View Scheme
Multi-step reaction with 5 steps
1: 92 percent / DMSO; (COCl)2; NEt3 / CH2Cl2 / -78 °C
2: 2,4,6-Cl3C6H2COCl; TEA; DMAP / tetrahydrofuran; toluene / 1 h / 20 °C
3: 95 percent / HF / pyridine; CH2Cl2 / 20 °C
4: 92 percent / Zn; aq. NH4Cl / methanol / Heating
View Scheme
Multi-step reaction with 9 steps
1.1: Dess-Martin periodane / dichloromethane / 0.5 h / 20 °C
2.1: lithium diisopropyl amide; n-butyllithium / tetrahydrofuran; hexane / 1.5 h / -78 - 40 °C
2.2: 0.03 h / -78 °C
3.1: 2,6-dimethylpyridine / dichloromethane / 6 h / 0 °C
4.1: dichloro-acetic acid / dichloromethane / 2 h / 20 °C
5.1: Dess-Martin periodane / dichloromethane / 0.5 h / 20 °C
6.1: sodium chlorite; sodium dihydrogenphosphate; 2,3-Dimethyl-2-butene / tetrahydrofuran; water; tert-butyl alcohol / 1 h / 20 °C
7.1: potassium carbonate; magnesium bromide ethyl etherate; n-butanethiol / diethyl ether / 2 h / 20 °C
8.1: triethylamine; 2,4,6-trichlorobenzoyl chloride / tetrahydrofuran / 0.75 h / 0 °C
8.2: 5 h / 75 °C
9.1: trifluoroacetic acid / dichloromethane / 6 h / 0 °C
View Scheme
(3S)-3-[((tert-butyl)dimethylsilyl)oxy]-1-[(1S,5R)-10,10-dimethyl-3,3-dioxido-3-thia-4-azatricyclo[5.2.1.01.5]dec-4-yl]-4,4-dimethylheptan-1,5-dione
250679-52-8

(3S)-3-[((tert-butyl)dimethylsilyl)oxy]-1-[(1S,5R)-10,10-dimethyl-3,3-dioxido-3-thia-4-azatricyclo[5.2.1.01.5]dec-4-yl]-4,4-dimethylheptan-1,5-dione

epothilone D
189453-10-9

epothilone D

Conditions
ConditionsYield
Multi-step reaction with 9 steps
1.1: 76 percent / lithium hydroxide; hydrogen peroxide / tetrahydrofuran; H2O / 4 h / 20 °C
2.1: diisopropylamine; n-butyllithium / tetrahydrofuran; hexane / 1.25 h / -78 - -40 °C
2.2: 59 percent / ZnCl2 / tetrahydrofuran; hexane; diethyl ether / 0.25 h / -78 °C
3.1: pyridine / CH2Cl2 / 1 h / 0 °C
4.1: CH2Cl2 / 5 h / 20 °C
5.1: 0.67 g / acetic acid / tetrahydrofuran; H2O / 3 h / 0 °C
6.1: 72 percent / magnesium bromide; nitromethane; 1-butanethiol / diethyl ether / 1 h / 20 °C
7.1: 2,4,6-trichlorobenzoyl chloride; triethylamine / tetrahydrofuran / 1 h / 0 °C
7.2: 0.14 g / DMAP / toluene; tetrahydrofuran / 4 h / 20 °C
8.1: 92 percent / zinc; ammonium chloride / methanol / 0.33 h / Heating
9.1: 95 percent / hydrogen fluoride-pyridine / tetrahydrofuran / 16 h / 20 °C
View Scheme
Multi-step reaction with 6 steps
1.1: lithium hydroxide monohydrate; dihydrogen peroxide / tetrahydrofuran; water / 24.5 h / 0 - 25 °C / Inert atmosphere
2.1: dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride / dichloromethane / 2 h / 20 °C / Inert atmosphere
3.1: titanium tetrachloride; N-ethyl-N,N-diisopropylamine / dichloromethane / 1 h / -78 °C / Inert atmosphere
3.2: 15 h / -12 °C / Inert atmosphere
4.1: 2,6-dimethylpyridine / dichloromethane / 5 h / -45 - 20 °C / Inert atmosphere
5.1: Hoveyda-Grubbs catalyst second generation / 1,2-dichloro-ethane / 4 h / 80 °C / Inert atmosphere
6.1: trifluoroacetic acid / dichloromethane / 2 h / -20 - 0 °C / Inert atmosphere
View Scheme
epothilone D
189453-10-9

epothilone D

epothilone B
152044-54-7

epothilone B

Conditions
ConditionsYield
With 3,3-dimethyldioxirane In dichloromethane at -50℃;98%
With 3,3-dimethyldioxirane In dichloromethane; acetone at -78 - -50℃; for 2.5h; Epoxidation;97%
With 3,3-dimethyldioxirane In dichloromethane at -35℃;97%
t-butyldimethylsiyl triflate
69739-34-0

t-butyldimethylsiyl triflate

epothilone D
189453-10-9

epothilone D

(4S,7R,8S,9S,13Z,16S)-4,8-bis{[tert-butyl(dimethyl)silyl]oxy}-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]oxacyclohexadec-13-ene-2,6-dione
189453-35-8

(4S,7R,8S,9S,13Z,16S)-4,8-bis{[tert-butyl(dimethyl)silyl]oxy}-5,5,7,9,13-pentamethyl-16-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]oxacyclohexadec-13-ene-2,6-dione

Conditions
ConditionsYield
With triethylamine In dichloromethane at -78℃;85%
With 2,6-dimethylpyridine In dichloromethane at 0℃; silylation;
epothilone D
189453-10-9

epothilone D

C27H42N2O5S

C27H42N2O5S

Conditions
ConditionsYield
With bis{rhodium[3,3'-(1,3-phenylene)bis(2,2-dimethylpropanoic acid)]}; O-(2,4-dinitrophenyl)hydroxylamine at 25℃; for 4h; Inert atmosphere;70%
epothilone D
189453-10-9

epothilone D

A

epothilone B
152044-54-7

epothilone B

B

(1R,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione

(1R,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[(E)-1-methyl-2-(2-methyl-1,3-thiazol-4-yl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione

Conditions
ConditionsYield
With Oxone; 1,1,1-trifluoro-2-propanone; edetate disodium; sodium hydrogencarbonate In water; acetonitrile at 0℃;A 69%
B n/a
With 3,3-dimethyldioxirane In dichloromethane; acetone at -78 - -50℃;A 53%
B n/a
With 3-chloro-benzenecarboperoxoic acid In chloroform at -10 - 0℃; for 5h;A 30%
B n/a
epothilone D
189453-10-9

epothilone D

(1S,3S,7S,10R,11S,12S,16R)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[(1E)-1-(2-methyl-1,3-thiazol-4-yl)prop-1-en-2-yl]-4-oxa-17-azabicyclo[14.1.0]heptadecane-5,9-dione

(1S,3S,7S,10R,11S,12S,16R)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[(1E)-1-(2-methyl-1,3-thiazol-4-yl)prop-1-en-2-yl]-4-oxa-17-azabicyclo[14.1.0]heptadecane-5,9-dione

Conditions
ConditionsYield
With bis{rhodium[3,3'-(1,3-phenylene)bis(2,2-dimethylpropanoic acid)]}; O-(2,4-dinitrophenyl)hydroxylamine In 2,2,2-trifluoroethanol at 25℃; for 4h; Inert atmosphere;66%
With bis{rhodium[3,3'-(1,3-phenylene)bis(2,2-dimethylpropanoic acid)]}; O-(2,4-dinitrophenyl)hydroxylamine In 2,2,2-trifluoroethanol at 25℃; for 4h;66%

189453-10-9Upstream product

189453-10-9Relevant articles and documents

Epothilone D and its 9-Methyl analogues: Combinatorial syntheses, conformation, and biological activities

Sang, Feng,Feng, Peng,Chen, Jie,Ding, Yahui,Duan, Xiyan,Zhai, Jiadai,Ma, Xiaoyan,Zhang, Bin,Zhang, Quan,Lin, Jianping,Chen, Yue

, p. 321 - 332 (2013)

Epothilone D (Epo D) and its 9-Methyl conformational analogues were synthesized through a highly efficient combinatorial approach. The fragment E was synthesized in 11 total steps with 6 longest linear steps, and each aldehyde B was prepared via a 3-step sequence. Starting from the common precursor E and a suitable aldehydes B, each target molecule were obtained in only 4 steps. The 9-(S)-epo D and 9-(R)-epo D demonstrated significant difference in inhibition activities against cancer cell lines and in conformational analysis.

Highly concise routes to epothilones: The total synthesis and evaluation of epothilone 490

Biswas, Kaustav,Lin, Hong,Njardarson, Jon T.,Chappell, Mark D.,Chou, Ting-Chao,Guan, Yongbiao,Tong, William P.,He, Lifeng,Horwitz, Susan B.,Danishefsky, Samuel J.

, p. 9825 - 9832 (2002)

A concise modular laboratory construction of the epothilone class of promising antitumor agents has been accomplished. For the first time in the epothilone area, the new synthesis exploits the power of ring-closing olefin metathesis (RCM) in a stereospecific way. Previous attempts at applying RCM to epothilone syntheses have been repeatedly plagued by complete lack of stereocontrol in the generation of the desired 12,13-olefin geometry in the products. The isolation of epothilone 490 (3) prompted us to reevaluate the utility of the RCM procedure for fashioning the 10,11-olefin, with the Z-12,13-olefin geometry already in place. Olefin metathesis of the triene substrate 12 afforded the product diene macrolide in stereoselective fashion. For purposes of greater synthetic convergency, the C3-(S)-alcohol was fashioned late in the synthesis, using chiral titanium-mediated aldol conditions with the entire O-alkyl fragment as a C15 acetate as the enolate component. Examination of the effects of protecting groups on the RCM process showed that deprotection of the C7 alcohol has a beneficial effect on the reaction yield. Performing the RCM as the last synthetic step in the sequence afforded a 64% yield of only the desired E-olefin. Selective diimide reduction of the new 10,11-olefin yielded 12,13-desoxyepothilone B, our current clinical candidate, demonstrating the utility of this new RCM-reduction protocol in efficiently generating the epothilone framework. Furthermore, the new olefin was selectively funtionalized to demonstrate the advantage conferred by this route for the construction of new analogues for SAR studies, in cytoxicity and microtubule affinity screens. Also described is the surprisingly poor in vivo performance of epothilone 490 in xenografts in the light of very promising in vitro data. This disappointing outcome was traced to unfavorable pharmacokinetic features of the drug in murine plasma. By the pharmacokinetic criteria, the prognosis for the effectiveness of 3 in humans is, in principle, much more promising.

The Total Synthesis of Epothilone D as a Yardstick for Probing New Methodologies

Haydl, Alexander M.,Breit, Bernhard

, p. 541 - 545 (2017/01/18)

Here, a concise and highly convergent synthesis of epothilone D was investigated, relying on fragments of equal complexity that could be prepared in gram scale quantities. The strategy to construct the fragments includes the use of a previously reported enantiospecific zinc-catalyzed cross-coupling of an α-hydroxy ester triflate with a Grignard reagent, the application of a hydroboration/boron–magnesium exchange sequence for the rapid construction of the Z-substituted trisubstituted double bond present in the natural product, and a Noyori-type hydrogenation to install the β-hydroxy ester moiety of the southern part. The key to success is the diastereoselective head-to-tail macrolactonization by an intramolecular addition of the corresponding ω-alkynyl-substituted carboxylic acids to construct a new stereocenter in the macrocyclic core structure in one single step.

PROCESS FOR THE PREPARATION OF (1S,3S,7S,10R,11S,12S,16R)-7,11-DIHYDROXY-8,8,10,12,16-PENTAMETHYL-3-[(1E)-1-METHYL-2-(2-METHYL-4-THIAZOLYL)ETHENYL]-17-OXA-4-AZABICYCLO[14.1.0]HEPTADECANE-5,9-DIONE AND INTERMEDIATES THEREOF

-

, (2015/06/25)

The present invention relates to an improved process for the preparation of (1S,3S,7S,10R,11S,12S,16R)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[(1E)-1-methyl-2-(2- methyl-4-thiazolyl)ethenyl]- 17-oxa-4-azabicyclo[ 14.1.0]heptadecane-5,9-dione represented by the following structural formula I and intermediates thereof. The present invention also provides novel intermediate compounds useful for the preparation of compound of formula I and its intermediates.

Total synthesis of epothilone D: The nerol/macroaldolization approach

Wessjohann, Ludger A.,Scheid, Guenther O.,Eichelberger, Uwe,Umbreen, Sumaira

, p. 10588 - 10595 (2013/11/19)

A highly convergent and stereocontrolled synthesis of epothilone D (4) is reported. Key features are a cheap and Z-selective synthesis of the northern half based on nerol and acetoacetate and chromium(II)-mediated Reformatsky reactions as a powerful tool for chemoselective asymmetric carbon-carbon bond formations, including an unusual stereospecific macroaldolization.

An efficient total synthesis of (-)-epothilone B

Wang, Jie,Sun, Bing-Feng,Cui, Kai,Lin, Guo-Qiang

, p. 6354 - 6357 (2013/02/23)

An efficient total synthesis of (-)-epothilone B has been achieved in ca. 8% yield over 11 steps from 9 (or 10 steps from 7/8), which features a bissiloxane-tethered ring closing metathesis reaction to approach the trisubstituted (Z) double bond and forms a new basis for further development of an industrial process for epothilone B and ixabepilone.

Total synthesis of epothilones using functionalised allylstannanes for remote stereocontrol

Martin, Nathaniel,Thomas, Eric J.

, p. 7952 - 7964 (2013/06/27)

Two syntheses of the C(7)-C(16)-fragment 41 of epothilone D 2 were developed that were based on tin(iv) bromide mediated reactions of 5,6-difunctionalised hex-2-enylstannanes with aldehydes. In the first synthesis, (5S)-6-tert-butyldimethylsilyloxy-5-hydroxy-2-methylhex-2-enyl(tributyl) stannane 20 was reacted with (E)-but-2-enal to give (2S,7R,4Z,8E)-1-tert- butyldimethylsilyloxy-5-methyldeca-4,8-diene-2,7-diol 26 containing ca. 20% of its (7S)-epimer. Following desilylation, the crystalline (2S,7R)-triol 32 was protected as its acetonide 33 and esterified to give the (4-methoxybenzyloxy) acetate 34. An Ireland-Claisen rearrangement of this ester gave methyl (2R,3S,10S,4E,7Z)-3,7-dimethyl-10,11-(dimethylmethylene)dioxy-2-(4- methoxybenzyloxy)undeca-4,7-dienoate 35 that was converted into (2S,9S,6Z)-2,6-dimethyl-9,10-(dimethylmethylene)dioxydec-6-en-1-ol 41 by regioselective alkene manipulation, ester reduction and cleavage of the resulting terminal diol 40 with a reductive work-up. The second synthesis involved the tin(iv) bromide mediated reaction between the stannane 20 and (3S)-4-(4-methoxybenzyloxy)-3-methylbutanal 44 that gave (2S,7S,9S,4Z)-1-tert- butyldimethylsilyloxy-5,9-dimethyl-10-(4-methoxybenzyloxy)dec-4-ene-2,7-diol 45 containing ca. 20% of its (7R)-epimer. After desilylation and protection of the vicinal diol as its acetonide 46, a Barton-McCombie reductive removal of the remaining hydroxyl group gave the (2S,9S,6Z)-2,6-dimethyl-9,10- (dimethylmethylene)dioxydec-6-en-1-ol 41 after oxidative removal of the PMB-ether. The first of these syntheses uses just one chiral starting material, but the second is shorter and more convergent. It was therefore modified by the use of (5S)-6-tert-butyldimethylsilyloxy-5-(2-trimethylsilylethoxy)methoxy-2- methylhex-2-enyl(tributyl)stannane 49 that reacted with (3S)-4-(4- methoxybenzyloxy)-3-methylbutanal 44 to give a 50:50 mixture of the C(4)-epimers of (2S,9S,6Z)-10-tert-butyldimethylsilyloxy-1-(4-methoxybenzyloxy)-2,6- dimethyl-9-(2-trimethylsilylethoxy)methoxydec-6-en-4-ol 50 with high fidelity for formation of the (Z)-alkene. Following the Barton-McCombie deoxygenation, the product 52 was taken through to (2S,9S,6Z,10E)-2,6,10-trimethyl-11-(2- methyl-1,3-thiazol-4-yl)-9-(2-trimethylsilylethoxy)methoxyundeca-6,10-dienal 59 that corresponded to the fully functionalised C(7)-C(17) fragment of epothilone D 2. A precedented stereoselective aldol condensation followed by O-protection, selective deprotection, oxidation and macrocyclisation then gave the macrolide 71 that was deprotected to complete a synthesis of epothilone D 2. Finally regio- and stereo-selective epoxidation gave epothilone B 1.

Synthesis of epothilone D with the forced application of oxycyclopropane intermediates

Hurski,Kulinkovich

, p. 1653 - 1674 (2012/04/04)

The total synthesis of epothilone D with six-fold application in the intermediate stages of successive cyclopropanation - opening or cleavage of the three-membered ring was performed. These transformations underlie the new stereoselective method developed for coupling fragments C7-C 12 and C13-C21 in the target molecule.

Total synthesis of epothilone D by sixfold ring cleavage of cyclopropanol intermediates

Hurski, Alaksiej L.,Kulinkovich, Oleg G.

scheme or table, p. 3497 - 3500 (2010/09/05)

The ring-opening or ring fragmentation reactions of cyclopropanol intermediates are used in the total synthesis of epothilone D for the creation of trisubstituted double bonds, an ethyl ketone functionality, as well as for the protection of carboxylic and ester groups. Epothilone D is obtained in 1.6% overall yield (24 steps in the longest linear sequence) starting from (R)-methyl 2,3-O-isopropylideneglycerate. The key cyclopropanol intermediates are efficiently obtained by titanium(IV)-catalyzed reactions of readily available esters with Grignard reagents. Crown Copyright

METHODS, KITS, AND COMPOUNDS FOR DETERMINING RESPONSIVENESS TO TREATMENT OF A PATHOLOGICAL DISORDER BY EPOTHILONES

-

, (2009/04/24)

The invention provides methods, kits and compounds for determining the potential responsiveness of a subject suffering from a pathological disorder, including non-small cell lung cancer (NSCLC), to treatment with an epothilone by analyzing the gene expression profile and/or certain molecular markers in a sample obtained from said subject. The invention further relates to methods, compounds and uses of said compounds for treating subjects suffering from said pathologic disorder, optionally in combination with other therapeutic agents. Also provided are genes and/or proteins encoded by them whose expression level have been determined to differ between epothilone responders and epothilone non-responders.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 189453-10-9