189628-38-4Relevant articles and documents
Copper-Catalyzed Cyanation of Aryl- and Alkenylboronic Reagents with Cyanogen Iodide
Okamoto, Kazuhiro,Sakata, Naoki,Ohe, Kouichi
supporting information, p. 4670 - 4673 (2015/10/12)
Direct catalytic cyanation of organoboronic acids with cyanogen iodide has been achieved by using a copper-bipyridine catalyst system. The cyanation reaction is likely to occur through two catalytic cycles: copper(II)-catalyzed iodination of organoboronic acids and the following cyanidocopper(I)-mediated cyanation of organic iodides.
NOVEL AMIDE COMPOUNDS
-
, (2008/06/13)
A compound of the formula (I):R1-A-X-NHCO-Y-R2 ???whereinR1 is heterocyclic group which may have suitable substituents, or phenyl which may have suitable substituents,R2 is condensed phenyl which may have suitable substituents, phenyl which may have suitable substituents, or thienyl which may have suitable substituents,A is a group of the formula:-(CH2)t-(O)m- or in which R3 and R4 are each hydrogen or linked together to form imino,R5 is hydrogen or lower alkyl,t is 0, 1 or 2,p, m and n are each 0 or 1,X is phenylene which may have suitable substituents, or bivalent heterocyclic group containing nitrogen which may have suitable substituents,Y is bond, lower alkylene, or lower alkenylene, and a salt thereof.
Phenethylthiazolylthiourea (PETT) compounds as a new class of HIV-1 reverse transcriptase inhibitors. 2. Synthesis and further structure-activity relationship studies of PETT analogs
Cantrell, Amanda S.,Engelhardt, Per,H?gberg, Marita,Jaskunas, S. Richard,Johansson, Nils Gunnar,Jordan, Christopher L.,Kangasmets?, Jussi,Kinnick, Michael D.,Lind, Peter,Morin Jr., John M.,Muesing,Noreén, Rolf,?berg, Bo,Pranc, Paul,Sahlberg, Christer,Ternansky, Robert J.,Vasileff, Robert T.,Vrang, Lotta,West, Sarah J.,Zhang, Hong
, p. 4261 - 4274 (2007/10/03)
Phenylethylthiazolylthiourea (PETT) derivatives have been identified as a new series of nonnucleoside inhibitors of HIV-1 RT. Structure-activity relationship studies of this class of compounds resulted in the identification of N-[2-(2-pyridyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea hydrochloride (trovirdine; LY300046.HCl) as a highly potent anti-HIV-1 agent. Trovirdine is currently in phase one clinical trials for potential use in the treatment of AIDS. Extension of these structure-activity relationship studies to identify additional compounds in this series with improved properties is ongoing. A part of this work is described here. Replacement of the two aromatic moleties of the PETT compounds by various substituted or unsubstituted heteroaromatic rings was investigated. In addition, the effects of multiple substitution in the phenyl ring were also studied. The antiviral activities were determined on wild-type and constructed mutants of HIV-1 RT and on wild-type HIV-1 and mutant viruses derived thereof, Ile100 and Cys181, in cell culture assays. Some selected compounds were determined on double- mutant viruses, HIV-1 (Ile100/Asn103) and HIV-1 (Ile100/Cys181). A number of highly potent analogs were synthesized. These compounds displayed IC50's against wild-type RT between 0.6 and 5 nM. In cell culture, these agents inhibited wild-type HIV-1 with ED50's between I and 5 nM in MT-4 cells. In addition, these derivatives inhibited mutant HIV-1 RT (Ile 100) with IC50's between 20 and 50 nM and mutant HIV-1 RT (Cys 181) with IC50's between 4 and 10 nM, and in cell culture they inhibited mutant HIV-1 (Ile100) with ED50's between 9 and 100 nM and mutant HIV-1 (Cys181) with ED50's between 3 and 20 nM.