19272-90-3Relevant articles and documents
A Thorough Study on the Photoisomerization of Ferulic Acid Derivatives
Moni, Lisa,Banfi, Luca,Basso, Andrea,Mori, Alessia,Risso, Federica,Riva, Renata,Lambruschini, Chiara
, p. 1737 - 1749 (2021/03/23)
A thorough study on the (E) to (Z) photoisomerization of ferulic acid derivatives (esters, amides of all types, and ketones) was carried out. At the photostationary state, only aliphatic or benzylic tertiary amides reach a nearly complete conversion of (E) isomers into the (Z) ones, whereas for esters, primary and secondary amides or aromatic tertiary amides mixtures of (Z)/(E) ranging from 7 : 93 to 72 : 28 are observed. Ketones show rather limited photoisomerization. However, (Z) ketones may be obtained by the reaction of organometal compounds with an isomerized (Z) Weinreb amide.
Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis
Badavath, Vishnu N.,Baysal, Ipek,Uar, Gülberk,Mondal, Susanta K.,Sinha, Barij N.,Jayaprakash, Venkatesan
, p. 9 - 19 (2016/01/29)
Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study.