19358-42-0Relevant articles and documents
Versatile Cp*Co(III)(LX) Catalyst System for Selective Intramolecular C-H Amidation Reactions
Chang, Sukbok,Jung, Hoimin,Kim, Dongwook,Lee, Jeonghyo,Lee, Jia,Park, Juhyeon
supporting information, p. 12324 - 12332 (2020/08/06)
Herein, we report the development of a tailored cobalt catalyst system of Cp*Co(III)(LX) toward intramolecular C-H nitrene insertion of azidoformates to afford cyclic carbamates. The cobalt complexes were easy to prepare and bench-stable, thus offering a convenient reaction protocol. The catalytic reactivity was significantly improved by the electronic tuning of the bidentate LX ligands, and the observed regioselectivity was rationalized by the conformational analysis and DFT calculations of the transition states. The superior performance of the newly developed cobalt catalyst system could be broadly applied to both C(sp2)-H and C(sp3)-H carbamation reactions under mild conditions.
Visible-Light-Induced Intramolecular C(sp2)-H Amination and Aziridination of Azidoformates via a Triplet Nitrene Pathway
Zhang, Yipin,Dong, Xunqing,Wu, Yanan,Li, Guigen,Lu, Hongjian
supporting information, p. 4838 - 4842 (2018/08/24)
Catalytic intramolecular C-H amination and aziridination reactions of o-allylphenyl azidoformates have been achieved under visible-light irradiation, providing a mild, clean, and efficient method for the synthesis of useful benzoxazolones and [5.1.0] bicyclic aziridines. Mechanistic studies suggest that a triplet nitrene acts as the reactive intermediate. The chemoselectivity of the reaction, with alkyl olefin aziridination ? electron deficient olefin aziridination ≈ C(sp2)-H amination ? C(sp3)-H amination was observed, which may be instructive in the development of an understanding of visible-light-induced triplet nitrene transformation reactions.
AZETIDINE DERIVATIVES USEFUL FOR THE TREATMENT OF METABOLIC AND INFLAMMATORY DISEASES
-
Page/Page column 56, (2012/08/07)
Compounds are disclosed that have a formula represented by the following: These compounds may be prepared as a pharmaceutical composition, and may be used for the prevention and treatment of a variety of conditions in mammals including humans, including by way of non-limiting example inflammatory conditions, infectious diseases, autoimmune diseases, diseases involving impairment of immune cell functions, cardiometabolic diseases, and/or proliferative diseases.
(Cyclopentadienyl)ruthenium-catalyzed regio- and enantioselective decarboxylative allylic etherification of allyl aryl and alkyl carbonates
Austeri, Martina,Linder, David,Lacour, Jerome
experimental part, p. 3339 - 3347 (2011/02/23)
(Cyclopentadienyl)tris(acetonitrile)ruthenium hexafluorophosphate {[CpRu(NCMe)3][PF6] or (cyclopentadienyl) (I·6-naphthalene)ruthenium hexafluorophosphate {[CpRu(I·6-naphthalene)][PF6]} in combination with a pyridine oxazoline ligand efficiently catalyze the decarboxylative allylic rearrangement of allyl aryl carbonates. Good levels of regio- and enantioselectivity are obtained. Starting from enantioenriched secondary carbonates, the reaction is stereospecific and the corresponding allylic ethers are obtained with net retention of configuration. An intermolecular version of this transformation was also developed using allyl alkyl carbonates as substrates. Conditions were found to obtain the corresponding products with similar selectivity as in the intramolecular process. Through the use of a hemi-labile hexacoordinated phosphate counterion, a zwitterionic air- and moisture-stable chiral ruthenium complex was synthesized and used in the enantioselective etherification reactions. This highly lipophilic metal complex can be recovered and efficiently reused in subsequent catalysis runs. Copyright