19883-75-1Relevant articles and documents
A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids
Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba
, p. 185 - 194 (2020/04/28)
A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.
Bi-enzymatic Conversion of Cinnamic Acids to 2-Arylethylamines
Weise, Nicholas J.,Thapa, Prasansa,Ahmed, Syed T.,Heath, Rachel S.,Parmeggiani, Fabio,Turner, Nicholas J.,Flitsch, Sabine L.
, p. 995 - 998 (2020/01/21)
The conversion of carboxylic acids, such as acrylic acids, to amines is a transformation that remains challenging in synthetic organic chemistry. Despite the ubiquity of similar moieties in natural metabolic pathways, biocatalytic routes seem to have been overlooked for this purpose. Herein we present the conception and optimisation of a two-enzyme system, allowing the synthesis of β-phenylethylamine derivatives from readily-available ring-substituted cinnamic acids. After characterisation of both parts of the reaction in a two-step approach, a set of conditions allowing the one-pot biotransformation was optimised. This combination of a reversible deaminating and irreversible decarboxylating enzyme, both specific for the amino acid intermediate in tandem, represents a general method by which new strategies for the conversion of carboxylic acids to amines could be designed.
Kinetic Resolution of Aromatic β-Amino Acids Using a Combination of Phenylalanine Ammonia Lyase and Aminomutase Biocatalysts
Weise, Nicholas J.,Ahmed, Syed T.,Parmeggiani, Fabio,Turner, Nicholas J.
, p. 1570 - 1576 (2017/05/05)
An enzymatic strategy for the preparation of (R)-β-arylalanines employing phenylalanine aminomutase and ammonia lyase (PAM and PAL) enzymes has been demonstrated. Candidate PAMs with the desired (S)-selectivity from Streptomyces maritimus (EncP) and Bacillus sp. (PabH) were identified via sequence analysis using a well-studied template sequence. The newly discovered PabH could be linked to the first ever proposed biosynthesis of pyloricidin-like secondary metabolites and was shown to display better β-lyase activity in many cases. In spite of this, a method combining the higher conversion of EncP with a strict α-lyase from Anabaena variabilis (AvPAL) was found to be more amenable, allowing kinetic resolution of five racemic substrates and a preparative-scale reaction with >98% (R) enantiomeric excess. This work represents an improved and enantiocomplementary method to existing biocatalytic strategies, allowing simple product separation and modular telescopic combination with a preceding chemical step using an achiral aldehyde as starting material. (Figure presented.).
Influence of the aromatic moiety in α- And β-arylalanines on their biotransformation with phenylalanine 2,3-aminomutase from: Pantoea agglomerans
Varga, Andrea,Bánóczi, Gergely,Nagy, Botond,Bencze, László Csaba,To?a, Monica Ioana,Gellért, ákos,Irimie, Florin Dan,Rétey, János,Poppe, László,Paizs, Csaba
, p. 56412 - 56420 (2016/07/06)
In this study enantiomer selective isomerization of various racemic α- and β-arylalanines catalysed by phenylalanine 2,3-aminomutase from Pantoea agglomerans (PaPAM) was investigated. Both α- and β-arylalanines were accepted as substrates when the aryl moiety was relatively small, like phenyl, 2-, 3-, 4-fluorophenyl or thiophen-2-yl. While 2-substituted α-phenylalanines bearing bulky electron withdrawing substituents did not react, the corresponding substituted β-aryl analogues were converted rapidly. Conversion of 3- and 4-substituted α-arylalanines happened smoothly, while conversion of the corresponding β-arylalanines was poor or non-existent. In the range of pH 7-9 there was no significant influence on the conversion of racemic α- or β-(thiophen-2-yl)alanines, whereas increasing the concentration of ammonia (ammonium carbonate from 50 to 1000 mM) inhibited the isomerization progressively and decreased the amount of the by-product (i.e. (E)-3-(thiophen-2-yl)acrylic acid was detected). In all cases, the high ee values of the products indicated excellent enantiomer selectivity and stereospecificity of the isomerization except for (S)-2-nitro-α-phenylalanine (ee 92%) from the β-isomer. Substituent effects were rationalized by computational modelling revealing that one of the main factors controlling biocatalytic activity was the energy difference between the covalent regioisomeric enzyme-substrate complexes.
The bacterial ammonia lyase EncP: A tunable biocatalyst for the synthesis of unnatural amino acids
Weise, Nicholas J.,Parmeggiani, Fabio,Ahmed, Syed T.,Turner, Nicholas J.
supporting information, p. 12977 - 12983 (2015/10/28)
Enzymes of the class I lyase-like family catalyze the asymmetric addition of ammonia to arylacrylates, yielding high value amino acids as products. Recent examples include the use of phenylalanine ammonia lyases (PALs), either alone or as a gateway to deracemization cascades (giving (S)- or (R)-α-phenylalanine derivatives, respectively), and also eukaryotic phenylalanine aminomutases (PAMs) for the synthesis of the (R)-β-products. Herein, we present the investigation of another family member, EncP from Streptomyces maritimus, thereby expanding the biocatalytic toolbox and enabling the production of the missing (S)-β-isomer. EncP was found to convert a range of arylacrylates to a mixture of (S)-α- and (S)-β-arylalanines, with regioselectivity correlating to the strength of electron-withdrawing/-donating groups on the ring of each substrate. The low regioselectivity of the wild-type enzyme was addressed via structure-based rational design to generate three variants with altered preference for either α- or β-products. By examining various biocatalyst/substrate combinations, it was demonstrated that the amination pattern of the reaction could be tuned to achieve selectivities between 99:1 and 1:99 for β:α-product ratios as desired.
Synthesis of D- and L-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process
Parmeggiani, Fabio,Lovelock, Sarah L.,Weise, Nicholas J.,Ahmed, Syed T.,Turner, Nicholas J.
, p. 4608 - 4611 (2015/04/14)
The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination.
Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway
Lovelock, Sarah L.,Lloyd, Richard C.,Turner, Nicholas J.
supporting information, p. 4652 - 4656 (2014/05/20)
Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1cB elimination mechanism. All manner of things: A competing MIO-independent (MIO=4-methylideneimidazole-5-one) reaction pathway has been identified for phenylalanine ammonia lyases (PALs), which proceeds in a non-stereoselective manner, resulting in the generation of D-phenylalanine derivatives. The mechanism of D-amino acid formation is explored through isotopic-labeling studies and mutagenesis of key active-site residues.
Synthesis and evaluation of multisubstrate inhibitors of an oncogene-encoded tyrosine-specific protein kinase. 2
Kruse,Holden,Offen,Pritchard,Feild,Rieman,Bender,Ferguson,Greig,Poste
, p. 1768 - 1772 (2007/10/02)
Tyrosine-specific protein kinases that transfer the terminal phosphate from ATP to protein acceptors are associated with certain transforming viruses and cell surface growth factor receptors. Here we describe the synthesis and testing of potential multisubstrate inhibitors of this class of enzymes. The inhibitors were prepared by covalent attachment of the terminal phosphate of ATP or its tetraphosphate analogue to tyrosine mimics. Testing against p60(v-abl), the tyrosine kinase from the Abelson murine leukemia virus, showed that the series of inhibitors was moderately potent (IV50 values as low as 13 μM). However, structural modification of the tyrosine mimic, including replacement with a serine-like moiety, had little effect on potency. It is therefore concluded that the ATP moiety is largely responsible for binding and that the enzyme requires additional structural features for recognition of the tyrosine-containing substrate.