22148-86-3Relevant articles and documents
Discovery and Redesign of a Family VIII Carboxylesterase with High (S)-Selectivity toward Chiral sec-Alcohols
Park, Areum,Park, Seongsoon
, p. 2397 - 2402 (2022/02/17)
Highly enantioselective lipase has been widely utilized in the preparation of versatile enantiopure chiral sec-alcohols through kinetic or dynamic kinetic resolution. Lipase is intrinsically (R)-selective, and it is difficult to obtain (S)-selective lipase. Recent crystal structures of a family VIII carboxylesterase have revealed that the spatial array of its catalytic triad is the mirror image of that of lipase but with a catalytic triad that is distinct from lipase. We, therefore, hypothesized that the family VIII carboxylesterase may exhibit (S)-enantioselectivity toward sec-alcohols similar to (S)-selective serine protease, whose catalytic triad is also spatially arrayed as its mirror image. In this study, a homologous enzyme (carboxylesterase from Proteobacteria bacterium SG_bin9, PBE) of a known family VIII carboxylesterase (pdb code: 4IVK) was prepared, which showed not only moderate (S)-selectivity toward sec-alcohols such as 3-butyn-2-ol and 1-phenylethyl alcohol but also (R)-selectivity toward particular sec-alcohols among the substrates explored. Furthermore, the (S)-selectivity of PBE has been significantly improved by rational redesign based on molecular modeling. Molecular modeling identified a binding pocket composed of Ser381, Ala383, and Arg408 for the methyl substituent of (R)-1-phenylethyl acetate and suggested that larger residues may increase the enantioselectivity by interfering with the binding of the slow-reacting enantiomer. As predicted, substituting Ser381with larger residues (Phe, Tyr, and Trp) significantly improved the (S)-selectivity of PBE toward all sec-alcohols explored, even the substrates toward which the wild-type PBE exhibits (R)-selectivity. For instance, the enantioselectivity toward 3-butyn-2-ol and 1-phenylethyl alcohol was improved from E = 5.5 and 36.1 to E = 2001 and 882, respectively, by single mutagenesis (S381F).
Application of robust ketoreductase from Hansenula polymorpha for the reduction of carbonyl compounds
Petrovi?ová, Tatiana,Gyuranová, Dominika,Pl?, Michal,Myrtollari, Kamela,Smonou, Ioulia,Rebro?, Martin
, (2021/02/05)
Enzyme-catalysed asymmetric reduction of ketones is an attractive tool for the production of chiral building blocks or precursors for the synthesis of bioactive compounds. Expression of robust ketoreductase (KRED) from Hansenula polymorpha was upscaled and applied for the asymmetric reduction of 31 prochiral carbonyl compounds (aliphatic and aromatic ketones, diketones and β-keto esters) to the corresponding optically pure hydroxy compounds. Biotransformations were performed with the purified recombinant KRED together with NADP+ recycling glucose dehydrogenase (GDH, Bacillus megaterium), both overexpressed in Escherichia coli BL21(DE3). Maximum activity of KRED for biotransformation of ethyl-2-methylacetoacetate achieved by the high cell density cultivation was 2499.7 ± 234 U g–1DCW and 8.47 ± 0.40 U·mg–1E, respectively. The KRED from Hansenula polymorpha is a very versatile enzyme with broad substrate specificity and high activity towards carbonyl substrates with various structural features. Among the 36 carbonyl substrates screened in this study, the KRED showed activity with 31, with high enantioselectivity in most cases. With several ketones, the Hansenula polymorpha KRED catalysed preferentially the formation of the (R)-secondary alcohols, which is highly valued.
Novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone
-
Paragraph 0126-0131, (2021/04/26)
The invention discloses a novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone. The preparation method of a chiral alcohol compound shown as formula IV comprises the following step of: reacting a ketone compound shown as formula V with hydrogen under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound to obtain the chiral alcohol compound shown as the formula IV; the preparation method of a chiral tetralone compound shown as formula VI comprises the following step of: under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound, reacting an alpha, beta-unsaturated ketone compound shown as formula VII with hydrogen to obtain the chiral tetralone compound shown as the formula VI. The method has the advantages of easy synthesis of raw materials, mild reaction conditions, simple operation, high stereoselectivity and the like, the ee value of the product is up to 92%, and the yield is up to 99%.
Impact of the Difluoromethylene Group in the Organocatalyzed Acylative Kinetic Resolution of α,α-Difluorohydrins
Andrei, Daniela,Bressy, Cyril,Desrues, Titouan,Médebielle, Maurice,Merad, Jérémy,Parrain, Jean-Luc,Pons, Jean-Marc,Quintard, Adrien
supporting information, p. 24924 - 24929 (2021/10/19)
Due to the omnipresence of chiral organofluorine compounds in pharmaceutical, agrochemical, and material chemistry, the development of enantioselective methods for their preparation is highly desirable. In the present study, the enantioselective organocatalyzed acylation of α,α-difluorohydrins using a commercially available chiral isothiourea is reported through a kinetic resolution (KR) process. It reveals that the difluoromethylene moiety (C(sp3)F2) can serve as a directing group through electrostatic fluorine–cation interactions, greatly improving the enantioselectivity of the KR. In this context, a broad range of fluorinated alcohols such as valuable 4,4-difluoro-1,3-diols could be synthesized with exquisite enantiocontrol (typically >99:1 er). Turning to 2,2-difluoro-1,3-diols, we also demonstrated that aromatic and fluorinated groups were mutually compatible to provide the expected enantioenriched adducts with >99:1 er.
Tridentate nitrogen phosphine ligand containing arylamine NH as well as preparation method and application thereof
-
Paragraph 0095-0102; 0105-0109, (2021/06/26)
The invention discloses a tridentate nitrogen phosphine ligand containing arylamine NH as well as a preparation method and application thereof, and belongs to the technical field of organic synthesis. The tridentate nitrogen phosphine ligand disclosed by the invention is the first case of tridentate nitrogen phosphine ligand containing not only a quinoline amine structure but also chiral ferrocene at present, a noble metal complex of the type of ligand shows good selectivity and extremely high catalytic activity in an asymmetric hydrogenation reaction, meanwhile, a cheap metal complex of the ligand can also show good selectivity and catalytic activity in the asymmetric hydrogenation reaction, and is very easy to modify in the aspects of electronic effect and space structure, so that the ligand has huge potential application value. A catalyst formed by the ligand and a transition metal complex can be used for catalyzing various reactions, can be used for synthesizing various drugs, and has important industrial application value.
Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity
Liang, Linfeng,Shi, Hu,Tian, Danping,Wang, Jun-Hao,Xue, Nan,Yang, Hengquan,Zhang, Xiaoming
supporting information, p. 16641 - 16652 (2021/10/20)
Enzymatic microarchitectures with spatially controlled reactivity, engineered molecular sieving ability, favorable interior environment, and industrial productivity show great potential in synthetic protocellular systems and practical biotechnology, but their construction remains a significant challenge. Here, we proposed a Pickering emulsion interface-directed synthesis method to fabricate such a microreactor, in which a robust and defect-free MOF layer was grown around silica emulsifier stabilized droplet surfaces. The compartmentalized interior droplets can provide a biomimetic microenvironment to host free enzymes, while the outer MOF layer secludes active species from the surroundings and endows the microreactor with size-selective permeability. Impressively, the thus-designed enzymatic microreactor exhibited excellent size selectivity and long-term stability, as demonstrated by a 1000 h continuous-flow reaction, while affording completely equal enantioselectivities to the free enzyme counterpart. Moreover, the catalytic efficiency of such enzymatic microreactors was conveniently regulated through engineering of the type or thickness of the outer MOF layer or interior environments for the enzymes, highlighting their superior customized specialties. This study provides new opportunities in designing MOF-based artificial cellular microreactors for practical applications.
Homochiral Dodecanuclear Lanthanide "cage in Cage" for Enantioselective Separation
Zhu, Chengfeng,Tang, Haitong,Yang, Keke,Fang, Yu,Wang, Kun-Yu,Xiao, Zhifeng,Wu, Xiang,Li, Yougui,Powell, Joshua A.,Zhou, Hong-Cai
supporting information, p. 12560 - 12566 (2021/08/23)
It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage"framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δor λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.
Ni/Chiral Sodium Carboxylate Dual Catalyzed Asymmetric O-Propargylation
Chang, Xihao,Guo, Chang,Peng, Lingzi,Xu, Xianghong
, p. 21048 - 21055 (2021/12/14)
A highly enantioselective O-propargylation catalyzed by combining a phosphine-nickel complex and an axially chiral sodium dicarboxylate has been developed. The transformation features mild reaction conditions, a broad substrate scope, and excellent functional group tolerance, offering an efficient approach to an array of enantioenriched O-propargyl hydroxylamines. Mechanistic studies support the presumed role of the chiral carboxylate as a counterion for nickel catalysis enabling the discovery of highly stereoselective transformations. The power of this reaction is illustrated by its application in the asymmetric total synthesis of potent firefly luciferase inhibitors and (S)-dihydroyashabushiketol.
Cu-catalyzed cross-coupling of benzylboronic esters and epoxides
Gierszal, Sophia G.,Barker, Timothy J.
supporting information, (2021/09/20)
A reaction between epoxides and benzylboronic acid pinacol esters is described. CuI was found to be an effective catalyst of this transformation upon activation of the benzylboronic ester with an alkyllithium reagent. The reaction was very efficient and a variety of substituted epoxides were found to be good substrates with good regioselectivity for substitution at the less substituted side of the epoxide. A reaction using an enantioenriched secondary benzylboronic ester was found to not be stereospecific.
Stereospecific Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Tosylate and Allyl Alcohol Electrophiles
Alexanian, Erik J.,Tercenio, Quentin D.
supporting information, p. 7215 - 7219 (2021/09/22)
The stereospecific cross-coupling of easily accessed electrophiles holds significant promise in the construction of C-C bonds. Herein, we report a nickel-catalyzed reductive coupling of allyl alcohols with chiral, nonracemic alkyl tosylates. This cross-coupling delivers valuable allylation products with high levels of stereospecificity across a range of substrates. The catalytic system consists of a simple nickel salt in conjunction with a commercially available reductant and importantly represents a rare example of a cross-coupling involving the C-O bonds of two electrophiles.