Welcome to LookChem.com Sign In|Join Free

CAS

  • or
N-benzylhexan-1-amine is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

25468-44-4 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 25468-44-4 Structure
  • Basic information

    1. Product Name: N-benzylhexan-1-amine
    2. Synonyms: benzenemethanamine, N-hexyl-; N-Benzylhexan-1-amine
    3. CAS NO:25468-44-4
    4. Molecular Formula: C13H21N
    5. Molecular Weight: 191.3125
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 25468-44-4.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 269.9°C at 760 mmHg
    3. Flash Point: 108.6°C
    4. Appearance: N/A
    5. Density: 0.895g/cm3
    6. Vapor Pressure: 0.00707mmHg at 25°C
    7. Refractive Index: 1.497
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. CAS DataBase Reference: N-benzylhexan-1-amine(CAS DataBase Reference)
    11. NIST Chemistry Reference: N-benzylhexan-1-amine(25468-44-4)
    12. EPA Substance Registry System: N-benzylhexan-1-amine(25468-44-4)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 25468-44-4(Hazardous Substances Data)

25468-44-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 25468-44-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,5,4,6 and 8 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 25468-44:
(7*2)+(6*5)+(5*4)+(4*6)+(3*8)+(2*4)+(1*4)=124
124 % 10 = 4
So 25468-44-4 is a valid CAS Registry Number.

25468-44-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzylhexan-1-amine

1.2 Other means of identification

Product number -
Other names N-(n-hexyl) benzylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:25468-44-4 SDS

25468-44-4Relevant articles and documents

Intramolecular C?H Amination of N-Alkylsulfamides by tert-Butyl Hypoiodite or N-Iodosuccinimide

Kiyokawa, Kensuke,Jou, Keisuke,Minakata, Satoshi

supporting information, p. 13971 - 13976 (2021/08/30)

1,3-Diamines are an important class of compounds that are broadly found in natural products and are also widely used as building blocks in organic synthesis. Although the intramolecular C?H amination of N-alkylsulfamide derivatives is a reliable method for the construction of 1,3-diamine structures, the majority of these methods involve the use of a transition-metal catalyst. We herein report on a new transition-metal-free method using tert-butyl hypoiodite (t-BuOI) or N-iodosuccinimide (NIS), enabling secondary non-benzylic and tertiary C?H amination reactions to proceed. The cyclic sulfamide products can be easily transformed into 1,3-diamines. Mechanistic investigations revealed that amination reactions using t-BuOI or NIS each proceed via different pathways.

Integrated Electro-Biocatalysis for Amine Alkylation with Alcohols

Pe?afiel, Itziar,Dryfe, Robert A. W.,Turner, Nicholas J.,Greaney, Michael F.

, p. 864 - 867 (2021/01/21)

The integration of electro and bio-catalysis offers new ways of making molecules under very mild, environmentally benign conditions. We show that TEMPO mediated electro-catalytic oxidation of alcohols can be adapted to work in aqueous buffers, with minimal organic co-solvent, enabling integration with biocatalytic reductive amination using the AdRedAm enzyme. The combined process offers a new approach to amine alkylation with native alcohols, a key bond formation in the chemical economy that is currently achieved via precious metal-catalyzed hydrogen-borrowing technologies. The electrobio transformation is effective for primary and secondary alcohols undergoing coupling with allyl, propargyl, benzyl, and cyclopropyl amines, and has been adapted for use with solid-supported AdRedAm for ease of operation.

Ruthenium(ii) complexes with N-heterocyclic carbene-phosphine ligands for theN-alkylation of amines with alcohols

Huang, Ming,Li, Yinwu,Lan, Xiao-Bing,Liu, Jiahao,Zhao, Cunyuan,Liu, Yan,Ke, Zhuofeng

supporting information, p. 3451 - 3461 (2021/05/03)

Metal hydride complexes are key intermediates forN-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in theN-alkylated reactionviareactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex6cbwith a phenyl wingtip group and BArF?counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selectionvia[Ru-H] species in this process.

Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3as a reductant

Zou, Qizhuang,Liu, Fei,Zhao, Tianxiang,Hu, Xingbang

supporting information, p. 8588 - 8591 (2021/09/04)

Herein, we report the first example of efficient reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a catalyst and a reductant under mild conditions, affording various tertiary and secondary amines in excellent yields. A mechanistic study indicates that BH3N(C2H5)3 plays a dual function role of promoting imine and iminium formation and serving as a reductant in reductive amination. This journal is

Fluorescent Membrane Tension Probes for Early Endosomes

Piazzolla, Francesca,Mercier, Vincent,Assies, Lea,Sakai, Naomi,Roux, Aurelien,Matile, Stefan

supporting information, p. 12258 - 12263 (2021/04/30)

Fluorescent flipper probes have been introduced recently to image membrane tension in live cells, and strategies to target these probes to specific membranes are emerging. In this context, early endosome (EE) targeting without the use of protein engineering is especially appealing because it translates into a fascinating transport problem. Weakly basic probes, commonly used to track the inside of acidic late endosomes and lysosomes, are poorly retained in EE because they are sufficiently neutralized in weakly acidic EE, thus able to diffuse out. Here, we disclose a rational strategy to target EE using a substituted benzylamine with a higher pKa value as a head group of the flipper probe. The resulting EE flippers are validated for preserved mechanosensitivity, ready for use in biology, particularly to elucidate the mechanics of endocytosis.

Highly economical and direct amination of sp3carbon using low-cost nickel pincer catalyst

Brandt, Andrew,Rangumagar, Ambar B.,Szwedo, Peter,Wayland, Hunter A.,Parnell, Charlette M.,Munshi, Pradip,Ghosh, Anindya

, p. 1862 - 1874 (2021/01/20)

Developing more efficient routes to achieve C-N bond coupling is of great importance to industries ranging from products in pharmaceuticals and fertilizers to biomedical technologies and next-generation electroactive materials. Over the past decade, improvements in catalyst design have moved synthesis away from expensive metals to newer inexpensive C-N cross-coupling approaches via direct amine alkylation. For the first time, we report the use of an amide-based nickel pincer catalyst (1) for direct alkylation of amines via activation of sp3 C-H bonds. The reaction was accomplished using a 0.2 mol% catalyst and no additional activating agents other than the base. Upon optimization, it was determined that the ideal reaction conditions involved solvent dimethyl sulfoxide at 110 °C for 3 h. The catalyst demonstrated excellent reactivity in the formation of various imines, intramolecularly cyclized amines, and substituted amines with a turnover number (TON) as high as 183. Depending on the base used for the reaction and the starting amines, the catalyst demonstrated high selectivity towards the product formation. The exploration into the mechanism and kinetics of the reaction pathway suggested the C-H activation as the rate-limiting step, with the reaction second-order overall, holding first-order behavior towards the catalyst and toluene substrate.

Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines

Beller, Matthias,Chandrashekhar, Vishwas G.,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kalevaru, Narayana V.,Kamer, Paul C. J.,Senthamarai, Thirusangumurugan,Zbo?il, Radek

, p. 2973 - 2981 (2020/03/27)

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

One-pot, chemoselective synthesis of secondary amines from aryl nitriles using a PdPt-Fe3O4nanoparticle catalyst

Byun, Sangmoon,Cho, Ahra,Cho, Jin Hee,Kim, B. Moon

, p. 4201 - 4209 (2020/09/23)

We have developed a new catalytic method for the one-pot, cascade synthesis of unsymmetrical secondary amines via the reductive amination of aryl nitriles with nitroalkanes using a PdPt-Fe3O4 nanoparticle (NP) catalyst. The use of a bimetallic catalyst resulted in enhanced reactivity and selectivity compared to that of either monometallic Pd-Fe3O4 or the Pt-Fe3O4 NP catalyst. Using this bimetallic catalytic system, we were successful in the synthesis of various unsymmetrical secondary amines under mild conditions. However, aryl nitriles containing an electron-donating substituent were rather resistant to the reductive amination, and when hexafluoroisopropanol (HFIP) was used as a co-solvent, the reaction selectivity and yield for unsymmetrical secondary amines increased dramatically. Using the catalyst system, one-pot, gram-scale synthesis of indole was possible from 2-nitrophenylacetonitrile. Due to the magnetic property of the Fe3O4 support, the bimetallic catalyst could easily be recycled using an external magnet at least four times.

Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols

Cherepakhin, Valeriy,Williams, Travis J.

, p. 56 - 65 (2019/12/12)

We describe the mechanism, scope, and catalyst evolution for our ruthenium-based coupling of amines and alcohols, which proceeds from a [(η6-cymene)RuCl(PyCH2PtBu2)]OTf (1) precatalyst. The method selectively produces secondary amines through a hydrogen borrowing mechanism and is successfully applied to several heterocyclic carbinol substrates. Under the reaction conditions, precatalyst 1 evolves through a series of catalytic intermediates: [(η6-cymene)RuH(PyCH2PtBu2)]OTf (3), [Ru3H2Cl2(CO)(PyCH2PtBu2)2{μ-(C5H3N)CH2PtBu2}]OTf (4), and a diastereomeric pair of [Ru2HCl(CO)2(PyCH2PtBu2)2(μ-O2CnPr)]X (trans-5, X = Cl; cis-6, X = OTf). The structures of 4 and 6 were established by single-crystal X-ray diffraction. A study of catalytic activity shows that 4 is a dormant (but alive) form of the catalyst, whereas 5 and 6 are the ultimate dead forms. Electrochemical studies show that 4 is redox active and undergoes electrochemically reversible one-electron oxidation at E1/2 = 0.442 V (vs Fc+/Fc) in CH2Cl2 solution. We discuss the factors that govern the formation of 3-6 and the role of selective ruthenium carbonylation, which is essential for enabling generation of the active catalyst. We also connect these discoveries to the identification of conditions for amination of aliphatic alcohols, which eluded us until we understood the catalyst's complex speciation behavior.

High-Throughput Screening of Reductive Amination Reactions Using Desorption Electrospray Ionization Mass Spectrometry

Cooks, R. Graham,Ferreira, Christina R.,Li, Yangjie,Logsdon, David L.,Paschoal Sobreira, Tiago Jose,Thompson, David H.

supporting information, p. 1647 - 1657 (2020/10/26)

This study describes the latest generation of a high-throughput screening system that is capable of screening thousands of organic reactions in a single day. This system combines a liquid handling robot with desorption electrospray ionization (DESI) mass spectrometry (MS) for a rapid reaction mixture preparation, accelerated synthesis, and automated MS analysis. A total of 3840 unique reductive amination reactions were screened to demonstrate the throughputs that are capable with the system. Products, byproducts, and intermediates were all monitored in full-scan mass spectra, generating a complete view of the reaction progress. Tandem mass spectrometry experiments were conducted to verify the identity of the products formed. The amine and electrophile reactivity trends represented in the data match what is expected from theory, indicating that the system accurately models the reaction performance. The DESI results correlated well with those generated using more traditional mass spectrometry techniques like liquid chromatography-mass spectrometry, validating the data generated by the system.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 25468-44-4