31582-46-4Relevant articles and documents
Thermo- and pH-Responsive Nanogel Particles Bearing Secondary Amine Functionalities for Reversible Carbon Dioxide Capture and Release
Werz, Patrick D. L.,Kainz, Johannes,Rieger, Bernhard
, p. 6433 - 6439 (2015)
We report the synthesis of temperature- and pH-responsive nanogel particles (NPs) consisting of N-isopropylacrylamide (NIPAM) and N-(2,2,6,6-tetramethylpiperidin-4-yl)methacrylamide (TMPMA). NPs can reversibly capture and release carbon dioxide via temperature-induced volume phase transition and changes in pH. These stimuli-responsive particles contain sterically hindered secondary amine functionalities and exhibit a volume phase transition temperature (VPTT) in aqueous solution. The fully reversible VPTT behavior involves a precise shrinkage to 40% of the initial particle size along with a large change in pH from 10.25 to 7.65 upon increasing temperature. We could reversibly release 35 mL (1.4 mmol) of CO2 per gram of polymer in very short heating times, thereby significantly increasing the amount of CO2 with respect to the regeneration time. This behavior could be repeated for various cycles at moderate temperatures (85 °C).
Antioxidant properties of 2-hydroxyethyl methacrylate-based copolymers with incorporated sterically hindered amine
Poláková,Raus,Kostka,Braunová,Pila?,Lobaz,Pánek,Sedláková
, p. 2726 - 2734 (2015)
A series of model linear copolymers of 2-hydroxyethyl methacrylate (HEMA) and a sterically hindered amine derivative [N-(2,2,6,6-tetramethyl-piperidin-4-yl)methacrylamide (HAS)] were synthesized and characterized. Scavenging activities of the copolymers against reactive oxygen species (peroxyl and hydroxyl radicals) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were determined. It was found that copolymers with medium HAS content (3.5-4.0 mol %) were better scavengers than copolymers with lower and higher HAS content and also than polyHEMA and polyHAS homopolymers and the HAS monomer. Importantly, these copolymers compared favorably even to established low-molecular weight antioxidant standards (BHA and dexpanthenol). Monomer reactivity ratios were determined, and the microstructure of the copolymers was assessed. Subsequently, cross-linked copolymers in the powder and film forms with optimal HAS content were synthesized. Their scavenging activities against the three types of radicals were determined, revealing that these hydrogels are potent scavengers of reactive oxygen species.