331818-28-1Relevant articles and documents
Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2- (phenoxymethyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives
Sathisha,Khanum, Shaukath A.,Chandra, J.N. Narendra Sharath,Ayisha,Balaji,Marathe, Gopal K.,Gopal, Shubha,Rangappa
, p. 211 - 220 (2011/03/17)
An elevated level of blood uric acid (hyperuricemia) is the underlying cause of gout. Xanthine oxidase is the key enzyme that catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid. Allopurinol, a widely used xanthine oxidase inhibitor is the most commonly used drug to treat gout. However, a small but significant portion of the population suffers from adverse effects of allopurinol that includes gastrointestinal upset, skin rashes and hypersensitivity reactions. Moreover, an elevated level of uric acid is considered as an independent risk factor for cardiovascular diseases. Therefore use of allopurinol-like drugs with minimum side effects is the ideal drug of choice against gout. In this study, we report the synthesis of a series of pyrimidin-5-one analogues as effective and a new class of xanthine oxidase inhibitors. All the synthesized pyrimidin-5-one analogues are characterized by spectroscopic techniques and elemental analysis. Four (6a, 6b, 6d and 6f) out of 20 synthesized molecules in this class showed good inhibition against three different sources of xanthine oxidase, which were more potent than allopurinol based on their respective IC50 values. Molecular modeling and docking studies revealed that the molecule 6a has very good interactions with the Molybdenum-Oxygen-Sulfur (MOS) complex a key component in xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious, than allopurinol, to treat gout and possibly against cardiovascular diseases.
Synthesis and biological evaluation of some novel 2-mercaptobenzothiazoles carrying 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties
Azam, M. Afzal,Suresh, Bhojraj,Kalsi, Sandip S.,Antony, A. Shinesh
experimental part, p. 114 - 122 (2011/06/09)
Several 2-mercaptobenzothiazole derivatives containing 1,3,4-oxadiazoles, 1,2,4-triazoles and 1,3,4-thiadiazoles at the second position were synthesized. Some of these synthesized compounds were evaluated for their in vivo analgesic, anti-inflammatory, acute toxicity and ulcerogenic actions. Some of the tested compounds showed significant analgesic and anti-inflammatory activities. Two of the compounds showed significant gastrointestinal protection compared to the standard drug diclofenac sodium. The compounds were also tested for their in vitro antimicrobial activity with most displaying selective activity against the Gram-negative bacteria Pseudomonas aeruginosa. In the present investigation the tested compounds did not possess antifungal activity.
Synthesis of 2-(N-formyl)-5-aryl/aryloxymethyl-1,3,4-thiadiazoles with potential bioactivity in PEG-400
Wang, Xi Cun,Ding, Xiao Mei,Wang, Sheng Qing,Chen, Xue Fei,Quan, Zheng Jun
scheme or table, p. 301 - 304 (2010/12/19)
An environmental benign procedure for synthesis of 2-(N-formyl)-5-aryl/aryloxymethyl-1,3,4-thiadiazoles has been developed by reaction of 2-amino-5-aryl/aryloxymethyl-1,3,4-thiadiazoles with formic acid in PEG-400. The key advantages of this protocol are
Solvent-free synthesis of 2-amino-5-aryloxymenthyl-1,3,4-thiadiazoles and their coumarin or benzofuran bis-heterocyclic derivatives
Li, Zheng,Yu, Jin-Lan,Yang, Jing-Ya,Zhu, Wei,Zhao, Yan-Long,Xing, Yu-Lin,Wang, Xi-Cun
, p. 183 - 190 (2007/10/03)
2-amino-5-aryloxymethyl-1,3,4-thiadiazoles were synthesized rapidly by a microwave-accelerated solvent-free procedure in high yield via the condensation of thiosemicarbazide with aryloxyacetic acids using poly(ethylene glycol)-supported dichlorophosphate
Polymer-supported dichlorophosphate: A recoverable new reagent for synthesis of 2-amino-1,3,4-thiadiazoles
Li, Zheng,Yu, Jin-Lan,Yang, Jing-Ya,Shi, Sheng-Yi,Wang, Xi-Cun
, p. 341 - 343 (2007/10/03)
Poly(ethylene glycol) (PEG) supported dichlorophosphate was efficiently used as a recoverable new dehydration reagent for rapid synthesis of 2-amino-5-substituted-1,3,4-thiadiazoles under microwave irradiation and solvent-free condition by reactions of thiosemicarbazide with aliphatic acids, benzoic acid, aryloxyacetic acids or furan-2-carboxylic acids.