36504-71-9Relevant articles and documents
Functional assessment of rat pulmonary flavin-containing monooxygenase activity
Yilmaz, Yildiz,Williams, Gareth,Manevski, Nenad,Walles, Markus,Kr?henbühl, Stephan,Camenisch, Gian
, p. 1 - 10 (2018)
The expression of flavin-containing monooxygenase (FMO) varies extensively between human and commonly used preclinical species such as rat and mouse. The aim of this study was to investigate the pulmonary FMO activity in rat using benzydamine. Furthermore, the contribution of rat lung to the clearance of benzydamine was investigated using an in vivo pulmonary extraction model.Benzydamine N-oxygenation was observed in lung microsomes and lung slices. Thermal inactivation of FMO and CYP inhibition suggested that rat pulmonary N-oxygenation is predominantly FMO mediated while any contribution from CYPs is negligible.The predicted lung clearance (CLlung) estimated from microsomes and slices was 16?±?0.6 and 2.1?±?0.3?mL/min/kg, respectively. The results from in vivo pulmonary extraction indicated no pulmonary extraction following intravenous and intra-arterial dosing to rats. Interestingly, the predicted CLlung using rat lung microsomes corresponded to approximately 35% of rat CLliver suggesting that the lung makes a smaller contribution to the whole body clearance of benzydamine.Although benzydamine clearance in rat appears to be predominantly mediated by hepatic metabolism, the data suggest that the lung may also make a smaller contribution to its whole body clearance.
Whole-cell dependent biosynthesis of N- and S-oxides using human flavin containing monooxygenases expressing budding yeast
Masuyama, Yuuka,Nishikawa, Miyu,Yasuda, Kaori,Sakaki, Toshiyuki,Ikushiro, Shinichi
, p. 274 - 280 (2020)
Flavin containing monooxygenases (FMOs) represent one of the predominant types of phase I drug metabolizing enzymes (DMEs), and thus play an important role in the metabolism of xeno- and endobiotics for the generation of their corresponding oxides. These oxides often display biological activities, however they are difficult to study since their chemical or biological synthesis is generally challenging even though only small amounts are required to evaluate their efficacy and safety. Previously, we constructed a DME expression system for cytochrome P450, UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) using yeast cells, and successfully produced xenobiotic metabolites in a whole-cell dependent manner. In this study, we developed a heterologous expression system for human FMOs, including FMO1–FMO5, in Saccharomyces cerevisiae and examined its N- and S-oxide productivity. The recombinant yeast cells expressed each of the FMO successfully, and the FMO4 transformant produced N- and S-oxide metabolites at several milligrams per liter within 24 h. This whole-cell dependent biosynthesis enabled the production of N- and S-oxides without the use of the expensive cofactor NADPH. Such novel yeast expression system could be a powerful tool for the production of oxide metabolites.
Human flavin-containing monooxygenase 3 on graphene oxide for drug metabolism screening
Castrignanò, Silvia,Gilardi, Gianfranco,Sadeghi, Sheila J.
, p. 2974 - 2980 (2015)
Human flavin-containing monooxygenase 3 (hFMO3), a membrane-bound hepatic protein, belonging to the second most important class of phase-1 drug-metabolizing enzymes, was immobilized in its active form on graphene oxide (GO) for enhanced electrochemical response. To improve protein stabilization and to ensure the electrocatalytic activity of the immobilized enzyme, didodecyldimethylammonium bromide (DDAB) was used to mimic lipid layers of biological membranes and acted as an interface between GO nanomaterial and the hFMO3 biocomponent. Grazing angle attenuated total reflectance Fourier transform infrared (GATR-FT-IR) experiments confirmed the preservation of the protein secondary structure and fold. Electrochemical characterization of the immobilized enzyme with GO and DDAB on glassy carbon electrodes was carried out by cyclic voltammetry, where several parameters including redox potential, electron transfer rate, and surface coverage were determined. This systems biotechnological application in drug screening was successfully demonstrated by the N-oxidation of two therapeutic drugs, benzydamine (nonsteroidal anti-inflammatory) and tamoxifen (antiestrogenic widely used in breast cancer therapy and chemoprevention), by the immobilized enzyme.
Genetic variants of flavin-containing monooxygenase 3 (FMO3) in Japanese subjects identified by phenotyping for trimethylaminuria and found in a database of genome resources
Shimizu, Makiko,Koibuchi, Natsumi,Mizugaki, Ami,Hishinuma, Eiji,Saito, Sakae,Hiratsuka, Masahiro,Yamazaki, Hiroshi
, (2021/04/12)
The oxygenation of food-derived trimethylamine to its N-oxide is a representative reaction mediated by human flavin-containing monooxygenase 3 (FMO3). Impaired FMO3 enzymatic activity is associated with trimethylaminuria (accumulation of substrate), whereas trimethylamine N-oxide (metabolite) is associated with arteriosclerosis. We previously reported FMO3 single-nucleotide and/or haplotype variants with low FMO3 metabolic capacity using urinary phenotyping and the whole-genome sequencing of Japanese populations. Here, we further analyze Japanese volunteers with self-reported malodor and interrogate an updated Japanese database for novel FMO3 single-nucleotide and/or haplotype variants. After 3 years of follow up, seven probands were found to harbor the known impaired FMO3 variant p.(Gly191Cys) identified in the database or novel variants/haplotypes including p.(Met66Val), p.(Arg223Gln), p.(Glu158Lys;Glu308Gly;Arg492Trp), and p.(Glu158Lys;Glu308Gly;Pro496Ser). The known severe mutation p.(Cys197Ter) (a TG deletion) and four variants including p.(Tyr269His) and p.(Pro496Ser) were first detected in the updated genome panel. Among previously unanalyzed FMO3 variants, the trimethylamine/benzydamine N-oxygenation activities of recombinant p.(Met66Val), p.(Arg223Gln), p.(Tyr269His), p.(Glu158Lys;Glu308Gly;Arg492Trp), and p.(Glu158Lys;Glu308Gly;Pro496Ser) FMO3 variant proteins were severely decreased (Vmax/Km 10% of wild-type). Although the present novel mutations or alleles were relatively rare, both in self-reported Japanese trimethylaminuria sufferers and in the genomic database panel, three common FMO3 missense or deletion variants severely impaired FMO3-mediated N-oxygenation of trimethylamine.
Biotransformation of benzydamine by microsomes and precision-cut slices prepared from cattle liver
Santi,Anfossi,Coldham,Capolongo,Sauer,Montesissa
, p. 73 - 86 (2007/10/03)
1. Benzydamine (BZ), a non-steroidal anti-inflammatory drug used in human and veterinary medicine, is not licensed for use in food-producing species. Biotransformation of BZ in cattle has not been reported previously and is investigated here using liver microsomes and precision-cut liver slices. 2. BZ was metabolized by cattle liver microsomes to benzydamine N-oxide (BZ-NO) and monodesmethyl-BZ (Nor-BZ). Both reactions followed Michaelis-Menten kinetics (Km = 76.4 ± 16.0 and 58.9 ± 6.4 μM, Vmax = 6.5 ± 0.8 and 7.4 ?? 0.5 nmol mg-1 min-1, respectively); sensitivity to heat and pH suggested that the N-oxidation is catalysed by the flavin-containing monooxygenases. 3. BZ-NO and Nor-BZ were the most abundant products derived from liver slice incubations, and nine other BZ metabolites were found and tentatively identified by LC-MS. Desbenzylated and hydroxylated BZ-NO analogues and a hydroxylated product of BZ were detected, which have been reported in other species. Product ion mass spectra of other metabolites, which are described here for the first time, indicated the formation of a BZ N+-glucuronide and five hydroxylated and N+-glucuronidated derivatives of BZ, BZ-NO and Nor-BZ. 4. The results indicate that BZ is extensively metabolized in cattle. Clearly, differences in metabolism compared with, for example, rat and human, will need to be considered in the event of submission for marketing authorization for use in food animals.