426224-26-2Relevant articles and documents
Palladium-Catalyzed Decarbonylative Iodination of Aryl Carboxylic Acids Enabled by Ligand-Assisted Halide Exchange
Boehm, Philip,Cacherat, Bastien,Lee, Yong Ho,Martini, Tristano,Morandi, Bill
supporting information, p. 17211 - 17217 (2021/07/02)
We report an efficient and broadly applicable palladium-catalyzed iodination of inexpensive and abundant aryl and vinyl carboxylic acids via in situ activation to the acid chloride and formation of a phosphonium salt. The use of 1-iodobutane as iodide source in combination with a base and a deoxychlorinating reagent gives access to a wide range of aryl and vinyl iodides under Pd/Xantphos catalysis, including complex drug-like scaffolds. Stoichiometric experiments and kinetic analysis suggest a unique mechanism involving C?P reductive elimination to form the Xantphos phosphonium chloride, which subsequently initiates an unusual halogen exchange by outer sphere nucleophilic substitution.
Synthesis of Arylstannanes via Palladium-Catalyzed Decarbonylative Coupling of Aroyl Fluorides
Kayumov, Muzaffar,Zhao, Jian-Nan,Mirzaakhmedov, Sharafitdin,Wang, Dong-Yu,Zhang, Ao
supporting information, p. 776 - 781 (2019/11/14)
Aryl stannanes are valuable precursors in organic transformations, but their synthetic methods are limited. Here we present a Pd-catalyzed decarbonylative stannylation of acid fluorides in the absence of exogenous base. Various aryl stannanes were efficiently prepared from bench-stable transition metal catalyst and ligand with broad functional group compatibility and substrate scope including natural products and pharmaceuticals. This protocol was also successfully used to a late-stage diversification of an existing uricosuric drug probenecid. (Figure presented.).
Visible-Light-Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions
Patra, Tuhin,Mukherjee, Satobhisha,Ma, Jiajia,Strieth-Kalthoff, Felix,Glorius, Frank
supporting information, p. 10514 - 10520 (2019/07/12)
Despite significant progress in aliphatic decarboxylation, an efficient and general protocol for radical aromatic decarboxylation has lagged far behind. Herein, we describe a general strategy for rapid access to both aryl and alkyl radicals by photosensitized decarboxylation of the corresponding carboxylic acids esters followed by their successive use in divergent carbon–heteroatom and carbon–carbon bond-forming reactions. Identification of a suitable activator for carboxylic acids is the key to bypass a competing single-electron-transfer mechanism and “switch on” an energy-transfer-mediated homolysis of unsymmetrical σ-bonds for a concerted fragmentation/decarboxylation process.
Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides
Lee, Yong Ho,Morandi, Bill
, p. 1016 - 1022 (2018/09/06)
Current methods for functional group interconversion have, for the most part, relied on relatively strong driving forces which often require highly reactive reagents to generate irreversibly a desired product in high yield and selectivity. These approaches generally prevent the use of the same catalytic strategy to perform the reverse reaction. Here we describe a catalytic functional group metathesis approach to interconvert, under CO-free conditions, two synthetically important classes of electrophiles that are often employed in the preparation of pharmaceuticals and agrochemicals—aroyl chlorides (ArCOCl) and aryl iodides (ArI). Our reaction design relies on the implementation of a key reversible ligand C–P bond cleavage event, which enables a non-innocent, metathesis-active phosphine ligand to mediate a rapid aryl group transfer between the two different electrophiles. Beyond enabling a practical and safer approach to the interconversion of ArCOCl and ArI, this type of ligand non-innocence provides a blueprint for the development of a broad range of functional group metathesis reactions employing synthetically relevant aryl electrophiles.