432511-95-0Relevant articles and documents
A versatile biosynthetic approach to amide bond formation
Philpott, Helena K.,Thomas, Pamela J.,Tew, David,Fuerst, Doug E.,Lovelock, Sarah L.
supporting information, p. 3426 - 3431 (2018/08/07)
The development of versatile and sustainable catalytic strategies for amide bond formation is a major objective for the pharmaceutical sector and the wider chemical industry. Herein, we report a biocatalytic approach to amide synthesis which exploits the diversity of Nature's amide bond forming enzymes, N-acyltransferases (NATs) and CoA ligases (CLs). By selecting combinations of NATs and CLs with desired substrate profiles, non-natural biocatalytic pathways can be built in a predictable fashion to allow access to structurally diverse secondary and tertiary amides in high yield using stoichiometric ratios of carboxylic acid and amine coupling partners. Transformations can be performed in vitro using isolated enzymes, or in vivo where reactions rely solely on cofactors generated by the cell. The utility of these whole cell systems is showcased through the preparative scale synthesis of a key intermediate of Losmapimod (GW856553X), a selective p38-mitogen activated protein kinase inhibitor.
METHOD FOR SYNTHESISING AMIDES
-
Page/Page column 43-44, (2018/03/06)
The present invention relates to a method for synthesising amides that is of general applicability. The method may be performed in vitro or in vivo. Cell lines for use in the in vivo methods also form aspects of the invention. The method for synthesising a non-natural amide comprises: a. reaction of a carboxylic acid with a naturally occurring CoA ligase or a variant thereof; and b. reaction of the product of step a with an amine in the presence of a naturally occurring acyltransferase or a variant thereof; with the proviso that where the CoA ligase and acyltransferase are both naturally occurring, they are not derived from the same source species and do not act sequentially in a metabolic pathway; and with the proviso that the non-natural product is not N-(E)-p-coumaroyl-3-hydroxyanthranilic acid or N-(E)-p-caffeoyl-3-hydroxyanthranilic acid. Further, a method for producing an active pharmaceutical ingredient by the aforementioned method and host cells for carrying out said methods are envisaged.