438-67-5Relevant articles and documents
A General Approach to O-Sulfation by a Sulfur(VI) Fluoride Exchange Reaction
Ferraro, Samantha L.,Flynn, James P.,Hwang, Seung,Liu, Chao,Niu, Jia,Yang, Cangjie
, p. 18435 - 18441 (2020/08/25)
O-sulfation is an important chemical code widely existing in bioactive molecules, but the scalable and facile synthesis of complex bioactive molecules carrying O-sulfates remains challenging. Reported here is a general approach to O-sulfation by the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl fluorosulfates and silylated hydroxy groups. Efficient sulfate diester formation was achieved through systematic optimization of the electronic properties of aryl fluorosulfates. The versatility of this O-sulfation strategy was demonstrated in the scalable syntheses of a variety of complex molecules carrying sulfate diesters at various positions, including monosaccharides, disaccharides, an amino acid, and a steroid. Selective hydrolytic and hydrogenolytic removal of the aryl masking groups from sulfate diesters yielded the corresponding O-sulfate products in excellent yields. This strategy provides a powerful tool for the synthesis of O-sulfate bioactive compounds.
A comprehensive approach to the synthesis of sulfate esters
Simpson, Levi S.,Widlanski, Theodore S.
, p. 1605 - 1610 (2007/10/03)
A comprehensive approach to the synthesis of sulfate esters was developed. This approach permits the direct and high-yielding synthesis of protected sulfate monoesters. Subsequent deblocking to reveal sulfate monoesters is accomplished in near-quantitative yield. The exceptionally stable neopentyl protecting group and the labile isobutyl protecting group were utilized in the synthesis of aromatic and aliphatic sulfate monoesters. Strategies for tuning protecting group reactivity were also explored and developed.
Process for isolating conjugated estrogens
-
Page/Page column 7-8, (2008/06/13)
The present invention relates to a process for extracting conjugated estrogens from pregnant mare urine. The present invention further relates to a process for obtaining a natural mixture of conjugated estrogens. The mixture of conjugated estrogens can be used to prepare products for estrogen replacement therapy or hormone replacement therapy. More specifically, the process for extracting conjugated estrogens from PMU comprises the steps of (a) contacting a mare urine material (MUM) with a resin to adsorb phenolic components, (b) contacting the phenolics-depleted MUM of step (a) with a resin to adsorb the stone and equilin, the major estrogen components, (c) containing the major estrogen-depleted MUM of step (b) with a resin to adsorb the minor estrogen components, (d) separately desorbing the major estrogen components and the minor estrogen components from the resins used in steps (b) and (c), and (e) separately treating the desorbed material form step (d) to obtain crystals of the major estrogen components and the minor estrogen components.