515156-88-4Relevant articles and documents
A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor
Borsari, Chiara,Rageot, Denise,Dall'Asen, Alix,Bohnacker, Thomas,Melone, Anna,Sele, Alexander M.,Jackson, Eileen,Langlois, Jean-Baptiste,Beaufils, Florent,Hebeisen, Paul,Fabbro, Doriano,Hillmann, Petra,Wymann, Matthias P.
, p. 8609 - 8630 (2019/10/16)
The mechanistic target of rapamycin (mTOR) plays a pivotal role in growth and tumor progression and is an attractive target for cancer treatment. ATP-competitive mTOR kinase inhibitors (TORKi) have the potential to overcome limitations of rapamycin derivatives in a wide range of malignancies. Herein, we exploit a conformational restriction approach to explore a novel chemical space for the generation of TORKi. Structure-activity relationship (SAR) studies led to the identification of compound 12b with a ~450-fold selectivity for mTOR over class I PI3K isoforms. Pharmacokinetic studies in male Sprague Dawley rats highlighted a good exposure after oral dosing and a minimum brain penetration. CYP450 reactive phenotyping pointed out the high metabolic stability of 12b. These results identify the tricyclic pyrimido-pyrrolo-oxazine moiety as a novel scaffold for the development of highly selective mTOR inhibitors for cancer treatment.
FUSED THIAZOLE DERIVATIVES AS KINASE INHIBITORS
-
Page/Page column 28, (2009/03/07)
A series of 6,7-dihydro[1,3]thiazolo[5,4-c]pyridin-4(5H)-one derivatives, which are substituted in the 2-position by a substituted morpholin-4-yl moiety, being selective inhibitors of PI3 kinase enzymes, are accordingly of benefit in medicine, for example in the treatment of inflammatory, autoimmune, cardiovascular, neurodegenerative, metabolic, oncological, nociceptive or ophthalmic conditions.