52128-86-6Relevant articles and documents
METHOD FOR ALKYLATING A MOLECULE OR AN ION
-
Page/Page column 34, (2019/04/16)
The present invention relates to a method for alkylating a molecule or an ion, wherein the molecule or the ion is alkylated by reacting it with an alkylating agent, wherein the alkylating agent is a compound according to formula (1) or a compound according to formula (4). In the formulae (1) and (4), R1 is a substituted C1-20-alkyl group, an unsubstituted C1-20-alkyl group, a substituted C3-20-cycloalkyl group or an unsubstituted C3-20-cycloaalkyl group, R2 is a substituted or unsubstituted C1-20 hydrocarbon residue or a hydrogen atom, R3 is a substituted or unsubstituted C1-20 hydrocarbon residue or a hydrogen atom, R4 and R5 are linked with each other to form an aromatic group or are independently from each other selected from the group consisting of a hydrogen atom, substituted and unsubstituted C1-20 hydrocarbon residues and electron withdrawing groups, R10 to R13 are independently from each other selected from the group consisting of a hydrogen atom, a substituted C1-20-alkyl group, an unsubstituted C1-20-alkyl group, a substituted C3-20-cycloalkyl group and an unsubstituted C3-20-cycloaalkyl group and A- is an anion.
Palladium(II) Chloride Complexes of N,N′-Disubstituted Imidazole-2-thiones: Syntheses, Structures, and Catalytic Performances in Suzuki-Miyaura and Sonogashira Coupling Reactions
Zhang, Li-Ming,Li, Hai-Yan,Li, Hong-Xi,Young, David James,Wang, Yong,Lang, Jian-Ping
, p. 11230 - 11243 (2017/09/25)
Reactions of PdCl2 with 2 equiv of N,N′-disubstituted-imidazole-2-thiones R1R2C3N2S (R1 = R2 = Me (1a), iPr (1b), Cy (1c), C6Me3H2 (1d); R1 = Me, R2 = Ph (1e)) under the different conditions afford five mononuclear complexes trans-[(R1R2C3N2S)2PdCl2] (R1 = R2 = Me (2a), iPr (2b), Cy (2c), C6Me3H2 (2d); R1 = Me, R2 = Ph (2e)) and five binuclear Pd(II) complexes [(PdCl2){μ-(R1R2C3N2S)}]2 (R1 = R2 = Me (3a), iPr (3b), Cy (3c), C6Me3H2 (3d); R1 = Me, R2 = Ph (3e)), respectively. Complexes 2a-2e are easily converted into the corresponding 3a-3e by adding equimolar PdCl2 in refluxing MeOH, while the reverse reaction is achieved at room temperature by addition of 2 equiv of 1a-1e. In 2b, 2d, and 2e, each Pd(II) holds a distorted square planar geometry completed by two trans Cl atoms and two trans S atoms. Complexes 3a-3e have a dimeric [Pd2S2] structure in which two {PdCl2} units are interlinked by two N,N′-disubstituted-imidazole-2-thiones. Each Pd(II) adopts a distorted square planar geometry accomplished by two cis Cl atoms and two cis bridging S atoms. Among them, complex 3d has the two largest C6Me3H2 groups on the 2 and 5 positions of imidazole-2-thione, the longest Pd-μ-S bond, the largest S-Pd-S angle, and displays the highest catalytic activity toward Suzuki-Miyaura and copper-free Sonogashira cross-coupling reactions, which are confirmed by density functional theory calculations. The results provide an interesting insight into the introduction of various substituent groups into the periphery ligands of coordination complex-based catalysts, which could tune their geometric structures to acquire the best catalytic activity toward organic reactions.