60106-64-1Relevant articles and documents
Development of an Operationally Simple, Scalable, and HCN-Free Transfer Hydrocyanation Protocol Using an Air-Stable Nickel Precatalyst
Bhawal, Benjamin N.,Jelmini, Nicola,Morandi, Bill,Reisenbauer, Julia C.
supporting information, (2022/03/01)
Hydrocyanation reactions enable access to synthetically valuable nitriles from readily available alkene precursors. However, hydrocyanation reactions using hydrogen cyanide (HCN) or similarly toxic reagents on laboratory scale can be particularly challenging due to their hazardous nature. In addition, such processes typically require air- and temperature-sensitive Ni(0) precatalysts, further reducing the operational simplicity of this transformation. Herein, we report a HCN-free transfer hydrocyanation of alkenes and alkynes that employs commercially available aliphatic nitriles as sacrificial HCN donors in combination with a catalytic amount of air-stable and inexpensive NiCl2as a precatalyst and a cocatalytic Lewis acid. The scalability and robustness of the catalytic process were demonstrated by the hydrocyanation of α-methylstyrene on a 100 mmol scale (11.4 g of product obtained) using 1 mol % of the Ni catalyst. In addition, the feasibility of the dehydrocyanation protocol using the air-stable Ni(II) precatalyst and norbornadiene as a sacrificial acceptor was showcased by the selective conversion of an aliphatic nitrile into the corresponding alkene.
Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile
Bhunia, Anup,Bergander, Klaus,Studer, Armido
supporting information, p. 16353 - 16359 (2018/11/25)
Catalytic transfer hydrocyanation represents a clean and safe alternative to hydrocyanation processes using toxic HCN gas. Such reactions provide access to pharmaceutically important nitrile derivatives starting with alkenes and alkynes. Herein, an efficient and practical cooperative palladium/Lewis acid-catalyzed transfer hydrocyanation of alkenes and alkynes is presented using 1-methylcyclohexa-2,5-diene-1-carbonitrile as a benign and readily available HCN source. A large set of nitrile derivatives (>50 examples) are prepared from both aliphatic and aromatic alkenes with good to excellent anti-Markovnikov selectivity. A range of aliphatic alkenes engage in selective hydrocyanation to provide the corresponding nitriles. The introduced method is useful for chain walking hydrocyanation of internal alkenes to afford terminal nitriles in good regioselectivities. This protocol is also applicable to late-stage modification of bioactive molecules.
3-(P-Biphenylyl)-butyronitrile and therapeutic compositions containing the same
-
, (2008/06/13)
3-(P-Biphenylyl)-butyronitrile, its production and its use as an antiphlogistic agent.