651321-58-3Relevant articles and documents
Use of group 4 Bis(sulfonamido) complexes in the intramolecular hydroamination of alkynes and allenes
Ackermann, Lutz,Bergman, Robert G.,Loy, Rebecca N.
, p. 11956 - 11963 (2007/10/03)
Titanium tetrakis(amido) complexes catalyze the intramolecular hydroamination of alkynes and allenes more efficiently than Cp-based species. We report here that electron-withdrawing and sterically demanding bis(sulfonamido) ligands lead to enhanced catalytic activity. Zirconium analogues have also been prepared, and the tosyl-substituted complex 20 has been structurally characterized. As in the titanium series, bis(sulfonamido) zirconium catalysts are more efficient in the intramolecular hydroamination of allenes than bis(cyclopentadienyl) complex Cp2ZrMe2 (23). Furthermore, these compounds transform 1,3-disubstituted aminoallenes with high stereoselectivity to the Z-allylamines and allow the hydroamination of a trisubstituted allene. Titanium bis(sulfonamido) imido complex 27 was synthesized. It converts aminoallene 10 to cylic imine 11 with a rate comparable to that of tetrakis(amide) 15, supporting the hypothesis of a catalytically active titanium imido intermediate.
Intramolecular Hydroamination/Cyclization of Conjugated Aminodienes Catalyzed by Organolanthanide Complexes. Scope, Diastereo- and Enantioselectivity, and Reaction Mechanism
Hong, Sukwon,Kawaoka, Amber M.,Marks, Tobin J.
, p. 15878 - 15892 (2007/10/03)
Organolanthanide complexes of the general type Cp′ 2LnCH(TMS)2 (Cp′ = η5-Me 5C5; Ln = La, Sm, Y; TMS = SiMe3) and CGCSmN(TMS)2 (CGC = Me2Si(η5-Me 4C5)(tBuN)) serve as effective precatalysts for the rapid, regioselective, and highly diastereoselective intramolecular hydroamination/cyclization of primary and secondary amines tethered to conjugated dienes. The rates of aminodiene cyclizations are significantly more rapid than those of the corresponding aminoalkenes. This dienyl group rate enhancement as well as substituent group (R) effects on turnover frequencies is consistent with proposed transition state electronic demands. Kinetic and mechanistic data parallel monosubstituted aminoalkene hydroamination/cyclization, with turnover-limiting C=C insertion into the Ln-N bond to presumably form an Ln-η3 allyl intermediate, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [aminodiene]. However, depending on the particular substrate and catalyst combination, deviations from zero-order kinetic behavior reflect competitive product inhibition or self-inhibition by substrate. Lanthanide ionic radius effects and ancillary ligation effects on turnover frequencies suggest a sterically more demanding Ln-N insertion step than in aminoalkene cyclohydroamination, while a substantially more negative ΔS? implies a more highly organized transition state. Good to excellent diastereoselectivity is obtained in the synthesis of 2,5-trans-disubstituted pyrrolidines (80% de) and 2,6-cis-disubstituted piperidines (99% de). Formation of 2-(prop-1-enyl)piperidine using the chiral C1-symmetric precatalyst (S)-Me2Si(OHF)(CpR* )SmN(TMS)2 (OHF = η5-octahydrofluorenyl; Cp = η5-C5H3; R* = (-)-menthyl) proceeds with up to 71% ee. The highly stereoselective feature of aminodiene cyclization is demonstrated by concise syntheses of naturally occurring alkaloids, (±)-pinidine and (+)-coniine from simple diene precursors.
Highly stereoselective intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanides
Hong, Sukwon,Marks, Tobin J.
, p. 7886 - 7887 (2007/10/03)
Efficient intramolecular hydroamination/cyclization of primary and secondary conjugated aminodienes can be effected by using organolanthanide precatalysts of the type Cp-2LnCH(TMS)2 (Cp- = η5-Me5C5; Ln = La, Sm, Y; TMS = SiMe3) and CGCSmN(TMS)2 (CGC = Me2Si(η5-Me4C5)(tBuN)). The transformation proceeds cleanly (≥ 90% conversion) at 25-60 °C with good rates and high regioselectivities, and with electronic effects leading to significant rate enhancements. Some features of the reaction parallel monosubstituted aminoalkene hydroamination/cyclization, including rate law (zero order in [aminodiene]), and rate enhancements observed with larger lanthanide ionic radii and/or more open catalyst ligation structures. Good to excellent diastereoselectivity is obtained in the synthesis of 2,5-trans-disubstituted pyrrolidines (80% de) and 2,6-cis-disubstituted piperidines (99% de) with using the corresponding α-methyl aminodiene precursors. Formation of 2-(prop-1-enyl)piperidine with the chiral C1-symmetric precatalyst (S)-Me2Si(OHF)(CpR*)SmN(TMS)2 (OHF = η5-octahydrofluorenyl; Cp = η5-C5H3; R* = (-)-menthyl) proceeds with up to 69% ee. Copyright