66147-19-1Relevant articles and documents
Synthesis and Biological Evaluation of Oxadiazole Clubbed Thiadiazole Derivatives as Antimicrobial Agents
Begari, Eeshwaraiah,Dave, Alpa Y.,Joshi, Deepkumar S.,Parmar, Kokila A.
, p. 273 - 280 (2021/08/03)
A series of 1,3,4-oxadiazole clubbed 1,3,4-thiadiazole derivatives were synthesized and assessed in vitro for their activity as antimicrobial agents. The target compounds 2-(5-(substituted aryl)-1, 3, 4-oxadiazol-2-ylthio)-N-(5-(substituted aryl)-1, 3, 4-thiadiazol-2-yl) acetamides (5a-5s) were synthesized using a basic condensation reaction between 5-(substituted aryl)-1,3,4-oxadiazole-2-thiol and 2-chloro-N-(5-(substituted aryl)-1,3,4-thiadiazol-2-yl)acetamide in presence of K2CO3 as a scavenging agent and acetone as reaction solvent. The titled compounds synthesized here, exhibited excellent to moderate antimicrobial activity against a broad panel of antibacterial strains of Gram-positive and Gram-negative bacteria and fungi.
Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker
Liu, Jie,Zhang, Guang-Yu,Zhang, Zhe,Li, Bo,Chai, Fei,Wang, Qi,Zhou, Zi-Dan,Xu, Ling-Ling,Wang, Shou-Kai,Jin, Zhen,Tang, You-Zhi
, (2021/05/17)
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85–110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.
Development of Novel (+)-Nootkatone Thioethers Containing 1,3,4-Oxadiazole/Thiadiazole Moieties as Insecticide Candidates against Three Species of Insect Pests
Cheng, Wanqing,Fan, Jiangping,Guo, Yong,Han, Meiyue,Ma, Nannan,Yan, Xiaoting,Yang, Ruige
, p. 15544 - 15553 (2022/01/03)
To improve the insecticidal activity of (+)-nootkatone, a series of 42 (+)-nootkatone thioethers containing 1,3,4-oxadiazole/thiadiazole moieties were prepared to evaluate their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal evaluation revealed that most of the title derivatives exhibited more potent insecticidal activities than the precursor (+)-nootkatone after the introduction of 1,3,4-oxadiazole/thiadiazole on (+)-nootkatone. Among all of the (+)-nootkatone derivatives, compound 8c (1 mg/mL) exhibited the best growth inhibitory (GI) activity against M. separata with a final corrected mortality rate (CMR) of 71.4%, which was 1.54- and 1.43-fold that of (+)-nootkatone and toosendanin, respectively; 8c also displayed the most potent aphicidal activity against M. persicae with an LD50 value of 0.030 μg/larvae, which was closer to that of the commercial insecticidal etoxazole (0.026 μg/larvae); and 8s showed the best larvicidal activity against P. xylostella with an LC50 value of 0.27 mg/mL, which was 3.37-fold that of toosendanin and slightly higher than that of etoxazole (0.28 mg/mL). Furthermore, the control efficacy of 8s against P. xylostella in the pot experiments under greenhouse conditions was better than that of etoxazole. Structure-activity relationships (SARs) revealed that in most cases, the introduction of 1,3,4-oxadiazole/thiadiazole containing halophenyl groups at the C-13 position of (+)-nootkatone could obtain more active derivatives against M. separata, M. persicae, and P. xylostella than those containing other groups. In addition, toxicity assays indicated that these (+)-nootkatone derivatives had good selectivity to insects over nontarget organisms (normal mammalian NRK-52E cells and C. idella and N. denticulata fries) with relatively low toxicity. Therefore, the above results indicate that these (+)-nootkatone derivatives could be further explored as new lead compounds for the development of potential eco-friendly pesticides.
Pleuromutilin derivative with 1, 3, 4-oxadiazole side chain and preparation and application thereof
-
Paragraph 0055-0056; 0070; 0090; 0094; 0095; 0102, (2021/07/24)
The invention belongs to the field of medicinal chemistry, and particularly relates to a pleuromutilin derivative with a 1, 3, 4-oxadiazole side chain and preparation and application thereof The pleuromutilin derivative with the 1, 3, 4-oxadiazole side chain is a compound shown in a formula 2 or a pharmaceutically acceptable salt thereof, and a solvent compound, an enantiomer, a diastereoisomer and a tautomer of the compound shown in the formula 2 or the pharmaceutically acceptable salt thereof or a mixture of the solvent compound, the enantiomer, the diastereoisomer and the tautomer in any proportion, including a racemic mixture. The pleuromutilin derivative has good antibacterial activity, is especially suitable for being used as a novel antibacterial agent for systemic system infection of animals or human beings, and has good water solubility.
Synthesis and bioactivity of sulfide derivatives containing 1,3,4-oxadiazole and pyridine
Yu, Gang,Chen, Shunhong,He, Feng,Luo, Dexia,Zhang, Yu,Wu, Jian
, p. 1075 - 1085 (2019/09/10)
A series of novel sulfide derivatives containing 1,3,4-oxadiazole and pyridine were synthesized, characterized, and tested for their antibacterial activity against tobacco bacterial wilt and rice bacterial blight and for insecticidal activity toward diamondback moth. The results showed that some compounds had good insecticidal and bactericidal activity, e.g., the activities of compounds 6e and 6g–6j toward tobacco bacterial wilt were much better than those of commercial thiodiazole-copper, and some of the synthesized compounds possessed good insecticidal activity against Plutella xylostella. Compounds 6d, 6h, 6j, 6l, 6p, 6r, and 6p displayed over 93% activity at 500 mg L? 1.
Ultrasound-assisted, one-pot, three-component synthesis and antibacterial activities of novel indole derivatives containing 1,3,4-oxadiazole and 1,2,4-triazole moieties
Shi, Zhichuan,Zhao, Zhigang,Huang, Meiwei,Fu, Xiaolin
, p. 1320 - 1327 (2015/12/11)
Thirteen novel indole derivatives were efficiently synthesized through ultrasound irradiation by using 4-amino-5-(1H-indol-3-yl)-4H-[1,2,4]triazole-3-thiol (8) and 2-mercapto-5-substituted-1,3,4-oxadiazoles (5a-m). Compared with conventional and microwave methods, yields increased to 82-93%, and reaction times decreased to 15-35 min. The structures of these novel compounds were characterized by spectral data and elemental analysis. Two out of the synthesized compounds (10f and 10l) exhibited excellent activity against Staphylococcus aureus and Escherichia coli, and thus warrant further research.
Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives
Shahzad, Sohail Anjum,Yar, Muhammad,Bajda, Marek,Shahzadi, Lubna,Khan, Zulfiqar Ali,Naqvi, Syed Ali Raza,Mutahir, Sadaf,Mahmood, Nasir,Khan, Khalid Mohammed
, p. 37 - 41 (2015/05/13)
Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (1-12) has been synthesized under simple reaction conditions in good to excellent yields (86-98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24 ± 1.28 to 258.43 ± 0.43 μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68 ± 4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24 ± 1.28 μM. Molecular docking studies revealed their binding mode.
Synthesis and evaluation of novel azoles as potent antifungal agents
Li, Liangjing,Ding, Hao,Wang, Baogang,Yu, Shichong,Zou, Yan,Chai, Xiaoyun,Wu, Qiuye
, p. 192 - 194 (2014/01/17)
Using a rational approach to the design of antifungal agents, a series of azole agents with 1,3,4-oxadiazole side chains were designed and synthesized. The results of preliminary in vitro antifungal tests with eight human pathogenic compounds showed that all of the title compounds exhibited excellent activities against all of the tested fungi except Aspergillus fumigatus. Compounds 11e and 11f were found to be the most effective, with a minimum inhibitory concentration of 0.0039 μg/mL, followed by voriconazole, which has a MIC of 0.0625 μg/mL. The 1,3,4-oxadiazole side chain is not the major contributor but plays a role in eliciting the observed antifungal activity.
Synthesis and evaluation of some substituted heterocyclic fluconazole analogues as antifungal agents
Wang, Shudong,Zhang, Lei,Jin, Yongsheng,Tang, Jin Hao,Su, Hua,Yu, Shichong,Ren, Haixiang
, p. 2362 - 2364 (2014/06/09)
A new series of fluconazole analogues of 1-(1H-1,2,4-triazol-1-yl)-2-(2,4- difluoro-phenyl)-3-4-(substituted-heterocyclic ring-1H-1,2,3- triazol-1-yl)-2-propanols (1-10) were designed, synthesized and evaluated as antifungal agents. Preliminary antifungal tests showed that most of the title compounds exhibited moderate activity with broad spectrum against eight human pathogenic fungi in vitro, compounds 1 and 6 had the best antifungal activity against Candida albicans with the value of MIC80 = 0.5 μg/mL respectively.
Facile conversion of acyldiithiocarbazinate salts to 1,3,4-oxadiazole derivatives under microwave irradiation
Joshi, Sachin,Karnik
, p. 111 - 114 (2007/10/03)
Microwave irradiation is found to be especially suitable for salts, as illustrated by the conversion of acyldithocarbazinate salts 1 to 5-substituted-2-mercapto 1,3,4-oxadiazoles 2. This method reduced the reaction time to a few seconds.