709653-55-4Relevant articles and documents
4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors
Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois
, (2021/06/15)
In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.
1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity
Becker, Katja,Benvenuti, Manuela,Bossis, Guillaume,Conde, Pierre-Alexis,Crowder, Michael W.,Dillenberger, Melissa,Docquier, Jean-Denis,Gavara, Laurent,Hernandez, Jean-Fran?ois,Legru, Alice,Mangani, Stefano,Pozzi, Cecilia,Sannio, Filomena,Tassone, Giusy,Thomas, Caitlyn A.,Verdirosa, Federica
, (2021/10/12)
Metallo-β-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to β-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5. Here, we present a new series of compounds substituted at the 4-position by a thioether-containing alkyl chain with a carboxylic and/or an aryl group at its extremity. Several compounds showed broad-spectrum inhibition with Ki values in the μM to sub-μM range against VIM-type enzymes, NDM-1 and IMP-1. The presence of the sulfur and of the aryl group was important for the inhibitory activity and the binding mode of a few compounds in VIM-2 was revealed by X-ray crystallography. Importantly, in vitro antibacterial susceptibility assays showed that several inhibitors were able to potentiate the activity of meropenem on Klebsiella pneumoniae clinical isolates producing VIM-1 or VIM-4, with a potentiation effect of up to 16-fold. Finally, a selected compound was found to only moderately inhibit the di-zinc human glyoxalase II, and several showed no or only moderate toxicity toward several human cells, thus favourably completing a promising behaviour.
Discovery of acylsulfonohydrazide-derived inhibitors of the lysine acetyltransferase, kat6a, as potent senescence-inducing anti-cancer agents
Priebbenow, Daniel L.,Leaver, David J.,Nguyen, Nghi,Cleary, Benjamin,Lagiakos, H. Rachel,Sanchez, Julie,Xue, Lian,Huang, Fei,Sun, Yuxin,Mujumdar, Prashant,Mudududdla, Ramesh,Varghese, Swapna,Teguh, Silvia,Charman, Susan A.,White, Karen L.,Shackleford, David M.,Katneni, Kasiram,Cuellar, Matthew,Strasser, Jessica M.,Dahlin, Jayme L.,Walters, Michael A.,Street, Ian P.,Monahan, Brendon J.,Jarman, Kate E.,Jousset Sabroux, Helene,Falk, Hendrik,Chung, Matthew C.,Hermans, Stefan J.,Downer, Natalie L.,Parker, Michael W.,Voss, Anne K.,Thomas, Tim,Baell, Jonathan B.
, p. 4655 - 4684 (2020/06/08)
A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 μM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 μM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.
4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors
Baud, Damien,Bebrone, Carine,Becker, Katja,Benvenuti, Manuela,Cerboni, Giulia,Chelini, Giulia,Cutolo, Giuliano,De Luca, Filomena,Docquier, Jean-Denis,Feller, Georges,Fischer, Marina,Galleni, Moreno,Gavara, Laurent,Gresh, Nohad,Kwapien, Karolina,Legru, Alice,Mangani, Stefano,Mercuri, Paola,Pozzi, Cecilia,Sannio, Filomena,Sevaille, Laurent,Tanfoni, Silvia,Verdirosa, Federica,Berthomieu, Dorothée,Bestgen, Beno?t,Frère, Jean-Marie,Hernandez, Jean-Fran?ois
, (2020/09/16)
Resistance to β-lactam antibiotics in Gram-negatives producing metallo-β-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the μM to sub-μM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several β-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.
1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases
Sevaille, Laurent,Gavara, Laurent,Bebrone, Carine,De Luca, Filomena,Nauton, Lionel,Achard, Maud,Mercuri, Paola,Tanfoni, Silvia,Borgianni, Luisa,Guyon, Carole,Lonjon, Pauline,Turan-Zitouni, Gülhan,Dzieciolowski, Julia,Becker, Katja,Bénard, Lionel,Condon, Ciaran,Maillard, Ludovic,Martinez, Jean,Frère, Jean-Marie,Dideberg, Otto,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois
, p. 972 - 985 (2017/06/27)
Metallo-β-lactamases (MBLs) cause resistance of Gram-negative bacteria to β-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL inhibitors of clinical value are still lacking. We previously identified the original binding mode of 4-amino-2,4-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione (compound IIIA) within the dizinc active site of the L1 MBL. Herein we present the crystallographic structure of a complex of L1 with the corresponding non-amino compound IIIB (1,2-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione). Unexpectedly, the binding mode of IIIB was similar but reverse to that of IIIA. The 3 D structures suggested that the triazole–thione scaffold was suitable to bind to the catalytic site of dizinc metalloenzymes. On the basis of these results, we synthesized 54 analogues of IIIA or IIIB. Nineteen showed IC50 values in the micromolar range toward at least one of five representative MBLs (i.e., L1, VIM-4, VIM-2, NDM-1, and IMP-1). Five of these exhibited a significant inhibition of at least four enzymes, including NDM-1, VIM-2, and IMP-1. Active compounds mainly featured either halogen or bulky bicyclic aryl substituents. Finally, some compounds were also tested on several microbial dinuclear zinc-dependent hydrolases belonging to the MBL-fold superfamily (i.e., endonucleases and glyoxalase II) to explore their activity toward structurally similar but functionally distinct enzymes. Whereas the bacterial tRNases were not inhibited, the best IC50 values toward plasmodial glyoxalase II were in the 10 μm range.
Discovery and mechanism study of SIRT1 activators that promote the deacetylation of fluorophore-labeled substrate
Wu, Jiahui,Zhang, Dengyou,Chen, Lei,Li, Jianneng,Wang, Jianling,Ning, Chengqing,Yu, Niefang,Zhao, Fei,Chen, Dongying,Chen, Xiaoyan,Chen, Kaixian,Jiang, Hualiang,Liu, Hong,Liu, Dongxiang
, p. 761 - 780 (2013/04/10)
SIRT1 is an NAD+-dependent deacetylase, whose activators have potential therapeutic applications in age-related diseases. Here we report a new class of SIRT1 activators. The activation is dependent on the fluorophore labeled to the substrate. To elucidate the activation mechanism, we solved the crystal structure of SIRT3/ac-RHKKac-AMC complex. The structure revealed that the fluorophore blocked the H-bond formation and created a cavity between the substrate and the Rossmann fold. We built the SIRT1/ac-RHKK ac-AMC complex model based on the crystal structure. Km and Kd determinations demonstrated that the fluorophore decreased the peptide binding affinity. The binding modes of SIRT1 activators indicated that a portion of the activators interacts with the fluorophore through π-stacking, while the other portion inserts into the cavity or interacts with the Rossmann fold, thus increasing the substrate affinity. Our study provides new insights into the mechanism of SIRT1 activation and may aid the design of novel SIRT1 activators.
Organometallic Complex, Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
-
, (2011/05/08)
Provided are organometallic complexes that can exhibit phosphorescence. One of the novel organometallic complexes is represented by General Formula (G1). In General Formula (G1), R1 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aralkyl group having 7 to 10 carbon atoms which may have a substituent. In addition, R2 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aryl group having 6 to 12 carbon atoms which may have a substituent. Further, Ar represents an arylene group having 6 to 13 carbon atoms which may have a substituent. Further, M represents a Group 9 element or a Group 10 element.
ORGANOMETALLIC COMPLEX, LIGHT-EMITTING ELEMENT, DISPLAY DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
-
Page/Page column 151, (2011/05/11)
Provided are organometallic complexes that can exhibit phosphorescence. One of the novel organometallic complexes is represented by General Formula (G1). In General Formula (G1), R1 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aralkyl group having 7 to 10 carbon atoms which may have a substituent. In addition, R2 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aryl group having 6 to 12 carbon atoms which may have a substituent. Further, Ar represents an arylene group having 6 to 13 carbon atoms which may have a substituent. Further, M represents a Group 9 element or a Group 10 element.