783297-84-7Relevant articles and documents
Norepinephrine alkaloids as antiplasmodial agents: Synthesis of syncarpamide and insight into the structure-activity relationships of its analogues as antiplasmodial agents
Aratikatla, Eswar K.,Valkute, Tushar R.,Puri, Sunil K.,Srivastava, Kumkum,Bhattacharya, Asish K.
, p. 1089 - 1105 (2017/08/03)
Syncarpamide 1, a norepinephrine alkaloid isolated from the leaves of Zanthoxylum syncarpum (Rutaceae) exhibited promising antiplasmodial activities against Plasmodium falciparum with reported IC50 values of 2.04 μM (D6 clone), 3.06 μM (W2 clone) and observed by us 3.90 μM (3D7 clone) and 2.56 μM (K1 clone). In continuation of our work on naturally occurring antimalarial compounds, synthesis of syncarpamide 1 and its enantiomer, (R)-2 using Sharpless asymmetric dihydroxylation as a key step has been accomplished. In order to study structure-activity-relationship (SAR) in detail, a library of 55 compounds (3–57), which are analogues/homologues of syncarpamide 1 were synthesized by varying the substituents on the aromatic ring, by changing the stereocentre at the C-7 and/or by varying the acid groups in the ester and/or amide side chain based on the natural product lead molecule and further assayed in vitro against 3D7 and K1 strains of P. falciparum to evaluate their antiplasmodial activities. In order to study the effect of position of functional groups on antiplasmodial activity profile, a regioisomer (S)-58 of syncarpamide 1 was synthesized however, it turned out to be inactive against both the strains. Two compounds, (S)-41 and its enantiomer, (R)-42 having 3,4,5-trimethoxy cinnamoyl groups as side chains showed better antiplasmodial activity with IC50 values of 3.16, 2.28 μM (3D7) and 1.78, 2.07 μM (K1), respectively than the natural product, syncarpamide 1. Three compounds (S)-13, (S)-17, (S)-21 exhibited antiplasmodial activities with IC50 values of 6.39, 6.82, 6.41 μM against 3D7 strain, 4.27, 7.26, 2.71 μM against K1 strain and with CC50 values of 147.72, 153.0, >200 μM respectively. The in vitro antiplasmodial activity data of synthesized library suggests that the electron density and possibility of resonance in both the ester and amide side chains increases the antiplasmodial activity as compared to the parent natural product 1. The natural product syncarpamide 1 and four analogues/homologues out of the synthesized library of 55, (S)-41, (R)-42, (S)-55 and (S)-57 were assayed in vivo assay against chloroquine-resistant P. yoelii (N-67) strain of Plasmodium. However, none of the five molecules, 1, (S)-41, (R)-42, (S)-55 and (S)-57 exhibited any promising in vivo antimalarial activity against P. yoelii (N-67) strain. Compounds 4, 6, 7 and 11 showed high cytotoxicities with CC50 values of 5.87, 5.08, 6.44 and 14.04 μM, respectively. Compound 6 was found to be the most cytotoxic as compared to the standard drug, podophyllotoxin whereas compounds 4 and 7 showed comparable cytotoxicities to podophyllotoxin.
Synthesis of C 1-symmetric chiral secondary diamines and their applications in the asymmetric copper(II)-catalyzed Henry (Nitroaldol) reactions
Zhou, Yirong,Dong, Junfang,Zhang, Fanglin,Gong, Yuefa
, p. 588 - 600 (2011/03/20)
A small library of C1-symmetric chiral diamines (L1-L9) was constructed via condensing exo-(-)-bornylamine or (+)-(1S,2S,5R)-menthylamine with various Cbz-protected amino acids. Among them, ligand L1/CuCl 2?2H2O complex (2.5 mol %) shows outstanding catalytic efficiency for Henry reaction between a variety of aldehydes and nitroalkanes to afford the expected products in high yields (up to 98%) with excellent enantioselectivities (up to 99%) and moderate to good diastereoselectivities (up to 90:10). This process is air-and moisture tolerant and has been applied to the synthesis of (S)-2-amino-1-(3,4-dimethoxyphenyl) ethanol (9), a key intermediate for (S)-epinephrine and (S)-norepinephrine. On the basis of HRMS and X-ray diffraction analysis of the L1/CuCl2 complex, a transition-state model was proposed to explain the origin of asymmetric induction. The low catalyst loading, excellent yields and enantioselectivities, inexpensive copper salt, and mild reaction conditions make our catalytic system to be practically useful.