83741-75-7Relevant articles and documents
Ion-Neutral Complexes as Intermediates in the Decompositions of C5H10O2.+ Isomers
McAdoo, David J.,Hudson, Charles E.,Skyiepal, Mark,Broido, Ellen,Griffin, Lawrence L.
, p. 7648 - 7653 (2007/10/02)
Ionized pentanoic acid, 3-methylbutanoic acid, and the enol isomer of ionized isopropyl acetate are shown to pass in part through common intermediates before decomposing to CH3C.HC(OH)2+ (7) and the "McLafferty + 1" ion CH3C(OH)2+ (10).The H transfer to form the methyl of CH3C(OH)2+ and the joining of two CH2 groups to form the C-C bond in the ethylene eliminated to produce CH3C.HC(OH)2+ are both attributed to reactions of the ion-neutral complex .H2C(OH)2+>.The McLafferty + 1 ion is also formed, especially from ionized esters, by another pathway in which complexes may or may not be intermediates.The intermediacy of the ion-neutral complexes is supported by energetic considerations, isotope effects, and the decomposition patterns of labeled ions.The latter correlate with a preference for hydrogen transfer from the end carbons of the C3 partner in other reactions proposed to be complex-mediated.Unification of the McLafferty rearrangement, the McLafferty + 1 rearrangement, and the McLafferty rearrangement with charge reversal by a common initial γ-hydrogen rearrangement followed by dissociation or isomerization in ion-neutral complexes is proposed.Group migration by 1,2-shifts, possibly by dissociation to form a double bond in one partner in an ion-neutral complex followed by addition at the opposite end of the double bond, is shown to be a general reaction of ions in the gas phase.
Pseudo One-Step Cleavage of C-C Bonds in the Decomposition of Ionized Carboxyclic Acids. Radical Like Reactions in Mass Spectrometry
Weiske, Thomas,Schwarz, Helmut
, p. 323 - 347 (2007/10/02)
Metastable molecular ions of hexanoic acid (1) decompose unimolecularly to C2H5. and protonated methacrylic acid (5-H+)(92percent rel. abund.).Investigation of the mechanism reveals that 1) the branched cation radical 11 must be regarded as the essential intermediate in the course of the rearrangement/dissociation reaction and 2) the process commences with intramolecular hydrogen transfer from either C-3 or C-5 to the ionized carbonyl oxygen ("hidden" hydrogen migration).Hydrogen transfer from C-4, which would correspond to the well-known McLafferty rearrangement, is of no importance in the C2H5.-elimination from 1.The same conclusion applies for various alternative mechanisms, as for example a SRi type reaction, 1 -> 2-H+.The gas phase chemistry of the cation radical of 1, and in particular the hydrogen exchange processes between the methylene groups C-2/C-3 and C-5/C-6, is in surprisingly close correspondence to the chemistry of free alkyl radicals. - The syntheses of various 13C and 2H-labelled model compounds are described.