Welcome to LookChem.com Sign In|Join Free

CAS

  • or
N-Amylamine hydrochloride, also known as the hydrochloride salt form of n-amylamine, is a primary aliphatic amine. It is a white to off-white crystalline powder that is soluble in water. N-AMYLAMINEHYDROCHLORIDE is commonly used in organic synthesis and pharmaceutical research as a reagent for the preparation of various compounds. It also serves as a building block for the synthesis of other chemicals and pharmaceuticals. Due to its nucleophilic properties, it is frequently used as a reactant in chemical reactions. Careful handling is required as it can cause skin and eye irritation, and respiratory issues if inhaled.

142-65-4 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 142-65-4 Structure
  • Basic information

    1. Product Name: N-AMYLAMINEHYDROCHLORIDE
    2. Synonyms: N-AMYLAMINEHYDROCHLORIDE
    3. CAS NO:142-65-4
    4. Molecular Formula: C5H14N*Cl
    5. Molecular Weight: 0
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 142-65-4.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 105.5°Cat760mmHg
    3. Flash Point: 4.4°C
    4. Appearance: /
    5. Density: 0.759g/cm3
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: N-AMYLAMINEHYDROCHLORIDE(CAS DataBase Reference)
    10. NIST Chemistry Reference: N-AMYLAMINEHYDROCHLORIDE(142-65-4)
    11. EPA Substance Registry System: N-AMYLAMINEHYDROCHLORIDE(142-65-4)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 142-65-4(Hazardous Substances Data)

142-65-4 Usage

Uses

Used in Organic Synthesis:
N-Amylamine hydrochloride is used as a reagent in organic synthesis for the preparation of various compounds. Its nucleophilic properties make it a valuable reactant in chemical reactions.
Used in Pharmaceutical Research:
In the pharmaceutical industry, N-Amylamine hydrochloride is utilized as a reagent for the preparation of pharmaceuticals. Its role in the synthesis of other chemicals and pharmaceuticals is crucial for developing new medications.
Used in Chemical Reactions:
N-Amylamine hydrochloride is used as a reactant in chemical reactions due to its nucleophilic properties, which facilitate the formation of new chemical bonds and the synthesis of desired products.
Used in Building Blocks for Synthesis:
As a building block, N-Amylamine hydrochloride is used in the synthesis of other chemicals, contributing to the creation of a wide range of compounds for various applications across different industries.

Check Digit Verification of cas no

The CAS Registry Mumber 142-65-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,4 and 2 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 142-65:
(5*1)+(4*4)+(3*2)+(2*6)+(1*5)=44
44 % 10 = 4
So 142-65-4 is a valid CAS Registry Number.
InChI:InChI=1S/C5H13N.ClH/c1-2-3-4-5-6;/h2-6H2,1H3;1H

142-65-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,2,3,4-tetrahydro-1,4-methanonaphthalen-9-amine

1.2 Other means of identification

Product number -
Other names n-amylamine hydrochloride

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:142-65-4 SDS

142-65-4Downstream Products

142-65-4Relevant articles and documents

Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications

Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming

supporting information, p. 1618 - 1629 (2021/01/25)

Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.

Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis

Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal

, p. 3943 - 3957 (2021/04/12)

The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.

Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents

An, Qing,Chen, Yuegang,Liu, Weimin,Pan, Hui,Wang, Xin,Wang, Ziyu,Zhang, Kaining,Zuo, Zhiwei

supporting information, p. 6216 - 6226 (2020/04/27)

Modern photoredox catalysis has traditionally relied upon metal-to-ligand charge-transfer (MLCT) excitation of metal polypyridyl complexes for the utilization of light energy for the activation of organic substrates. Here, we demonstrate the catalytic application of ligand-to-metal charge-transfer (LMCT) excitation of cerium alkoxide complexes for the facile activation of alkanes utilizing abundant and inexpensive cerium trichloride as the catalyst. As demonstrated by cerium-catalyzed C-H amination and the alkylation of hydrocarbons, this reaction manifold has enabled the facile use of abundant alcohols as practical and selective hydrogen atom transfer (HAT) agents via the direct access of energetically challenging alkoxy radicals. Furthermore, the LMCT excitation event has been investigated through a series of spectroscopic experiments, revealing a rapid bond homolysis process and an effective production of alkoxy radicals, collectively ruling out the LMCT/homolysis event as the rate-determining step of this C-H functionalization.

Facile Access to Optically Active 2,6-Dialkyl-1,5-Diazacyclooctanes

Chulakova, Dilyara R.,Pradipta, Ambara R.,Lodochnikova, Olga A.,Kuznetsov, Danil R.,Bulygina, Kseniya S.,Smirnov, Ivan S.,Usachev, Konstantin S.,Latypova, Liliya Z.,Kurbangalieva, Almira R.,Tanaka, Katsunori

supporting information, p. 4048 - 4054 (2019/08/20)

The chiral substituted 1,5-diazacyclooctane (1,5-DACO) is of considerable importance and has attracted attention from a wide range of fields due to their unique chemical and biological properties. Despite the application potential, further study has not been optimized due to difficulties in their synthetic accessibility. Here, we report that the 1,5-DACO bearing a chiral auxiliary obtained from the formal [4+4] cycloaddition of N-alkyl-α,β-unsaturated imines can be further derivatized by nucleophilic alkylation to give various chiral substituted 1,5-DACO derivatives. The removal of the chiral auxiliary was effectively carried out using hydrogenation over Pearlman's catalyst. This methodology allows the production of a broad range of unprecedented optically active 2,6-dialkyl-1,5-DACO, which could not be accessed by other methods.

Liquid-phase hydrogenation of nitriles to amines facilitated by a co(ii)/zn(0) pair: a ligand-free catalytic protocol

Timelthaler, Daniel,Topf, Christoph

, p. 11604 - 11611 (2019/10/02)

The given report introduces a simple and user-friendly in situ method for the production of catalytically active cobalt particles. The approach circumvents the use of air-and moisture-sensitive reductants as well as the application of anhydrous Co-precursor salts. Accordingly, the described catalytic system is readily assembled under open-flask conditions by simply combining the components in the reaction vessel. Therefore, the arduous charging procedure of the reaction autoclave in a glovebox under an inert gas atmosphere is no longer necessary. In fact, the catalytically active material is obtained upon treatment of readily available Co(OAc)2·4 H2O with benign commercial Zn powder. The catalytic performance of the resultant material was tested in the heterogeneous hydrogenation of nitriles to the corresponding primary amines. Both activity and selectivity of the cobalt catalyst are significantly enhanced if a triflate-based Lewis acid and ammonia is added to the reaction mixture.

Switching the Selectivity of Cobalt-Catalyzed Hydrogenation of Nitriles

Dai, Huiguang,Guan, Hairong

, p. 9125 - 9130 (2018/09/21)

Previous studies of base metals for catalytic hydrogenation of nitriles to primary amines or secondary aldimines focus on designing complexes with elaborate structures. Herein, we report "twin" catalytic systems where the selectivity of nitrile hydrogenation can be tuned by including or omitting the ligand HN(CH2CH2PiPr2)2 (iPrPNHP). Simply treating CoBr2 with NaHBEt3 generates cobalt particles, which can catalyze the hydrogenation of nitriles to primary amines with high selectivity and broad functional group tolerance. Ligating CoBr2 with iPrPNHP followed by the addition of NaHBEt3, however, forms a homogeneous catalyst favoring secondary aldimines for both hydrogenation and hydrogenative coupling of benzonitrile.

Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation to Primary Amines: A Combined Effort

Tokmic, Kenan,Jackson, Bailey J.,Salazar, Andrea,Woods, Toby J.,Fout, Alison R.

supporting information, p. 13554 - 13561 (2017/10/05)

The selective hydrogenation of nitriles to primary amines using a bench-stable cobalt precatalyst under 4 atm of H2 is reported herein. The catalyst precursor was reduced in situ using NaHBEt3, and the resulting Lewis acid formed, BEt3, was found to be integral to the observed catalysis. Mechanistic insights gleaned from para-hydrogen induced polarization (PHIP) transfer NMR studies revealed that the pairwise hydrogenation of nitriles proceeded through a Co(I/III) redox process.

Transfer hydrogenation of ketones, nitriles, and esters catalyzed by a half-sandwich complex of ruthenium

Lee, Sun-Hwa,Nikonov, Georgii I.

, p. 107 - 113 (2015/01/30)

Half-sandwich complexes [Cp(PiPr3)Ru(CH3CN)2]PF6 (1; Cp = cyclopentadienyl) and [Cp(phen)Ru(CH3CN)]PF6 (2; Cp = pentamethylcyclopentadienyl, phen = phenanthroline) catalyse the transfer hydrogenation of ketones to alcohols, aldimines to amines, and nitriles to imines under mild conditions. In the latter process, the imine products come from the coupling of the amines formed initially with acetone derived from the reducing solvent (isopropanol). Among functionally substituted nitriles, the aldo and keto groups are reduced concomitantly with the cyano group, whereas ester and amido groups are tolerated. Amides and alkyl esters are not reduced under these conditions even upon heating to 70°C. However, phenylbenzoates and trifluoroacetates are reduced to alcohols. Kinetic studies on the reduction of acetophenone in isopropanol established that the reaction is first order in both the substrate and the alcohol. Stoichiometric mechanistic studies showed the formation of a hydride species. A hydride mechanism was proposed to account for these observations.

A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: Iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant

Miyamoto, Kazunori,Sakai, Yuuta,Goda, Shunsuke,Ochiai, Masahito

supporting information; experimental part, p. 982 - 984 (2012/02/04)

The first catalytic version of hypervalent aryl-λ3- iodane-induced Hofmann rearrangement of primary carboxamides, which probably involves in situ generation of a tetracoordinated bis(aqua)(hydroxy)phenyl- λ3-iodane complex as an active oxidant from a catalytic amount of iodobenzene by the reaction with m-chloroperbenzoic acid in the presence of HBF4 in dichloromethane-water under mild conditions, was developed.

A convenient method for the preparation of primary amines using tritylamine

Theodorou, Vassiliki,Ragoussis, Valentine,Strongilos, Alexandros,Zelepos, Evangelos,Eleftheriou, Argyro,Dimitriou, Maria

, p. 1357 - 1360 (2007/10/03)

A simple method for the preparation of primary amines by treating N-tritylamines with trifluoroacetic acid has been established. The N-tritylamines were prepared by the reaction of alkyl halides or alkyl p-toluenesulfonates with tritylamine, or by the reaction of alkyl bromides with lithium tritylamide.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 142-65-4