198473-94-8Relevant articles and documents
Semisynthesis of a Bacterium with Non-canonical Cell-Wall Cross-Links
Chen, Jason S.,Dik, David A.,Schultz, Peter G.,Webb, Bill,Zhang, Nan
supporting information, p. 10910 - 10913 (2020/07/08)
The cell wall is an elaborate framework of peptidoglycan that serves to protect the bacterium against osmotic challenge. This exoskeleton is composed of repeating saccharides covalently cross-linked by peptide stems. The general structure of the cell wall is widely conserved across diverse Gram-negative bacteria. To begin to explore the biological consequence of introducing non-canonical cross-links into the cell wall of Escherichia coli, we generated a bacterium where up to 31percent of the cell-wall cross-links are formed by a non-enzymatic reaction between a sulfonyl fluoride and an amino group. Bacteria with these non-canonical cell-wall cross-links achieve a high optical density in culture, divide and elongate successfully, and display no loss of outer membrane integrity. This work represents a first step in the design of bacteria with non-canonical "synthetic"cell walls.
Changing the selectivity profile–from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors
Maiwald, Alexander,Hammami, Maya,Wagner, Sebastian,Heine, Andreas,Klebe, Gerhard,Steinmetzer, Torsten
, p. 89 - 97 (2016/12/03)
The type II transmembrane serine protease matriptase is a potential target for anticancer therapy and might be involved in cartilage degradation in osteoarthritis or inflammatory skin disorders. Starting from previously described nonspecific thrombin and factor Xa inhibitors we have prepared new noncovalent substrate-analogs with superior potency against matriptase. The most suitable compound 35 (H-d-hTyr-Ala-4-amidinobenzylamide) binds to matriptase with an inhibition constant of 26 nM and has more than 10-fold reduced activity against thrombin and factor Xa. The crystal structure of inhibitor 35 was determined in the surrogate protease trypsin, the obtained complex was used to model the binding mode of inhibitor 35 in the active site of matriptase. The methylene insertion in d-hTyr and d-hPhe increases the flexibility of the P3 side chain compared to their d-Phe analogs, which enables an improved binding of these inhibitors in the well-defined S3/4 pocket of matriptase. Inhibitor 35 can be used for further biochemical studies with matriptase.
Spiro piperidines and homologs promote release of growth hormone
-
, (2008/06/13)
There are disclosed certain novel compounds identified as spiro piperidines and homologs which promote the release of growth hormone in humans and animals. This property can be utilized to promote the growth of food animals to render the production of edible meat products more efficient, and in humans, to treat physiological or medical conditions characterized by a deficiency in growth hormone secretion, such as short stature in growth hormone deficient children, and to treat medical conditions which are improved by the anabolic effects of growth hormone. Growth hormone releasing compositions containing such spiro compounds as the active ingredient thereof are also disclosed.