22688-78-4Relevant articles and documents
FLAVONOIDS OF THE FLOWERS OF TAMARIX NILOTICA
Nawwar, M. A. M.,Souleman, A. M. A.,Buddrus, J.,Linscheid, M.
, p. 2347 - 2350 (1984)
The ethyl ester of kaempferol 3-O-β-D-glucuronide, the methyl and ethyl esters of quercetin 3-O-β-D-glucuronide have been isolated from an aqueous acetone extract of the flowers of Tamarix nilotica.In addition kaempferol 3-O-sulphate-7,4'-dimethyl ether and the free aglycones were isolated.The structures were established by routine methods, by FAB-MS and by 13C NMR spectral measurements. - Key Word Index: Tamarix nilotica; Tamaricaceae; flowers; kaempferol 3-O-β-D-glucuronide 6''-ethyl ester; quercetin 3-O-β-D-glucuronide 6''-methyl ester; quercetin 3-O-β-D-glucuronide 6''-ethyl ester; kaempferol 3-O-sulphate-7,4'-dimethyl ether.
Interplay of Efflux Transporters with Glucuronidation and Its Impact on Subcellular Aglycone and Glucuronide Disposition: A Case Study with Kaempferol
Li, Yuhuan,Lu, Linlin,Wang, Liping,Qu, Wei,Liu, Wenqin,Xie, Yushan,Zheng, Hongming,Wang, Ying,Qi, Xiaoxiao,Hu, Ming,Zhu, Lijun,Liu, Zhongqiu
, p. 5602 - 5614 (2018)
Glucuronidation is a major process of drug metabolism and elimination that generally governs drug efficacy and toxicity. Publications have demonstrated that efflux transporters control intracellular glucuronidation metabolism. However, it is still unclear whether and how efflux transporters interact with UDP-glucuronosyltransferases (UGTs) in subcellular organelles. In this study, kaempferol, a model fluorescent flavonoid, was used to investigate the interplay of glucuronidation with transport at the subcellular level. Human recombinant UGTs and microsomes were utilized to characterize the in vitro glucuronidation kinetics of kaempferol. The inhibition of UGTs and efflux transporters on the subcellular disposition of kaempferol were determined visually and quantitatively in Caco-2/TC7 cells. The knockout of transporters on the subcellular accumulation of kaempferol in liver and intestine were evaluated visually. ROS and Nrf2 were assayed to evaluate the pharmacological activities of kaempferol. The results showed that UGT1A9 is the primary enzyme responsible for kaempferol glucuronidation. Visual and quantitative data showed that the UGT1A9 inhibitor carvacrol caused a significant rise in subcellular aglycone and reduction in subcellular glucuronides of kaempferol. The inhibition and knockout of transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins (MRPs), exhibited a marked increase in subcellular kaempferol and decrease in its subcellular glucuronides. Correspondingly, inhibition of UGT1A9 and transporters led to increased kaempferol and, consequently, a significantly enhanced ROS scavenging efficiency and nuclear translocation of Nrf2. In conclusion, the interplay of efflux transporters (P-gp, BCRP, and MRPs) and UGTs govern the subcellular exposure and corresponding pharmacological activity of kaempferol.
Accurate prediction of glucuronidation of structurally diverse phenolics by human UGT1A9 using combined experimental and in silico approaches
Wu, Baojian,Wang, Xiaoqiang,Zhang, Shuxing,Hu, Ming
experimental part, p. 1544 - 1561 (2012/07/27)
Purpose: Catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics, was determined experimentally using 145 phenolics and analyzed by 3D-QSAR methods. Methods: Catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using CoMFA and CoMSIA techniques. Molecular alignment of substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered a separate substrate. Results: 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q 2=0.548, r2=0.949, r pred 2 =0.775; CoMSIA: q2=0.579, r2=0.876, rpred2 =0.700). Contour coefficient maps were applied to elucidate structural features among substrates that are responsible for selectivity differences. Contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9, enabling identification of the UGT1A9 catalytic pocket with a high degree of confidence. Conclusion: CoMFA/CoMSIA models can predict substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and substrate selectivity.
Regioselective glucuronidation of flavonols by six human UGT1A isoforms
Wu, Baojian,Xu, Beibei,Hu, Ming
experimental part, p. 1905 - 1918 (2012/05/07)
Purpose: Glucuronidation is a major barrier to flavonoid bioavailability; understanding its regiospecificity and reaction kinetics would greatly enhance our ability to model and predict flavonoid disposition. We aimed to determine the regioselective glucuronidation of four model flavonols using six expressed human UGT1A isoforms (UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10). Methods: In vitro reaction kinetic profiles of six UGT1A-mediated metabolism of four flavonols (all with 7-OH group) were characterized; kinetic parameters (Km, Vmax and CLint∈=∈Vmax/Km) were determined. Results: UGT1A1 and 1A3 regioselectively metabolized the 7-OH group, whereas UGT1A7, 1A8, 1A9 and 1A10 preferred to glucuronidate the 3-OH group. UGT1A1 and 1A9 were the most efficient conjugating enzymes with K m values of 1 μM and relative catalytic efficiency ratios of 5.5. Glucuronidation by UGT1As displayed surprisingly strong substrate inhibition. In particular, Ksi values (substrate inhibition constant) were less than 5.4 μM for UGT1A1-mediated metabolism. Conclusion: UGT1A isoforms displayed distinct positional preferences between 3-OH and 7-OH of flavonols. Differentiated kinetic properties between 3-O- and 7-O- glucuronidation suggested that (at least) two distinct binding modes within the catalytic domain were possible. The existence of multiple binding modes should provide better "expert" knowledge to model and predict UGT1A-mediated glucuronidation.
Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model
Wu, Baojian,Morrow, John Kenneth,Singh, Rashim,Zhang, Shuxing,Hu, Ming
experimental part, p. 403 - 413 (2011/12/16)
Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., Km, V max, intrinsic clearance (CLint) = Vmax/K m] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (Km, Vmax, CLint) were obtained. The observed Km, Vmax, and CLint values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of Vmax and CLint, respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (Vmax model: q2 = 0.738, r2 = 0.976, rpred2 = 0.735; CLint model: q2 = 0.561, r2 = 0.938, rpred2 = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9. Copyright