2362-28-9Relevant articles and documents
A kinetic study on nucleophilic displacement reactions of phenyl Y-substituted-phenyl carbonates with alkali metal ethoxides: Metal ion effect and reaction mechanism
Um, Ik-Hwan,Seo, Ji-Yoon,Kang, Ji-Sun,An, Jun-Sung
, p. 1007 - 1013,7 (2020/08/24)
Pseudo-first-order rate constants (kobsd) have been measured for reactions of phenyl Y-substituted-phenyl carbonates with alkali metal ethoxides (EtOM, M = Li, Na, and K). The plot of kobsd vs. [EtOM] curves upward for the reaction of diphenyl carbonate with EtOM but is linear for that with EtOK in the presence of 18-crown-6-ether (18C6), indicating that the reaction is catalyzed by M+ ions and the catalytic effect disappears in the presence of 18C6. The kobsd values for the reactions with EtOK have been dissected into fEtO- and kEtOK, i.e., the second-order rate constants for the reactions with dissociated EtO- and ion-paired EtOK, respectively. The Hammett plots correlated with σ- and σ-0 constants exhibit highly scattered points, while the Yukawa-Tsuno plots result in an excellent linear correlation with p = 2.11 and r = 0.21 for kEtO-, and P = 1.62 and r = 0.26 for kEtOK, implying that the reaction proceeds through a concerted mechanism. The catalytic effect (i.e., the kEtOK/kEtOr ratio) is independent of the electronic nature of the substituent Y. Thus, it has been concluded that K+ ion catalyzes the reaction by increasing the electrophilicity of the reaction center.
Kinetics and mechanism of nucleophilic displacement reactions of Y-substituted phenyl benzoates with cyanide Ion
Kim, Song-I,Kim, Eun-Hee,Um, Ik-Hwan
experimental part, p. 689 - 693 (2010/08/19)
Second-order rate constants (kCN-) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-r) with CN- ion in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 °C. The Bronsted-type plot is linear with βlg = -0.49, a typical βlg value for reactions reported to proceed through a concerted mechanism. Hammett plots correlated with σo and σ-constants exhibit many scattered points. In contrast, the Yukawa-Tsuno plot for the same reaction exhibits excellent linearity with pY = 1.37 and r = 0.34, indicating that a negative charge develops partially on the oxygen atom of the leaving aryloxide in the rate-determining step (RDS). Although two different mechanisms are plausible (i.e., a concerted mechanism and a stepwise pathway in which expulsion of the leaving group occurs at the RDS), the reaction has been concluded to proceed through a concerted mechanism on the basis of the magnitude of βlg and pY values.