Welcome to LookChem.com Sign In|Join Free

CAS

  • or

101-10-0

Post Buying Request

101-10-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

101-10-0 Usage

Chemical Properties

white to off-white crystalline powder

Uses

2-(3-Chlorophenoxy)propionic acid

General Description

2-(3-Chlorophenoxy)propionic acid is a chiral phenoxy acid herbicide. Enantiomeric resolution of 2-(3-chlorophenoxy)propionic acid has been performed by electrokinetic chromatography using a cyclodextrin as chiral pseudophase (CD-EKC).

Check Digit Verification of cas no

The CAS Registry Mumber 101-10-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 1 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 101-10:
(5*1)+(4*0)+(3*1)+(2*1)+(1*0)=10
10 % 10 = 0
So 101-10-0 is a valid CAS Registry Number.
InChI:InChI=1/C9H9ClO3/c1-6(9(11)12)13-8-4-2-3-7(10)5-8/h2-6H,1H3,(H,11,12)/p-1/t6-/m1/s1

101-10-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L08311)  2-(3-Chlorophenoxy)propionic acid, 98+%   

  • 101-10-0

  • 50g

  • 509.0CNY

  • Detail

101-10-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name Cloprop

1.2 Other means of identification

Product number -
Other names 2-(3-Chlorophenoxy)propionic Acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:101-10-0 SDS

101-10-0Relevant articles and documents

Kinetics and mechanism of thermal gas-phase elimination of α-substituted carboxylic acids: Role of relative basicity of α-substituents and acidity of incipient proton

Al-Awadi, Nouria A.,Kaul, Kamini,El-Dusouqui, Osman M. E.

, p. 499 - 504 (2000)

2-Phenoxypropanoic acid together with five of its aryl derivatives, its phenylthio and its N-phenylamino analogues were pyrolyzed at 494-566 K. The reactions were homogeneous, polar and free from catalytic and radical pathways, and obeyed a first-order rate equation. The limits of the Arrhenius log A (s-1) and E (kJ mol-1) values obtained for these reactions averaged 11.98 ± 1.71 and 158.1 ± 17.4, respectively. Analysis of the pyrolysates showed the elimination products to be carbon monoxide, acetaldehyde and the corresponding phenol, thiophenol or aniline compounds. The pyrolysis of 2-phenoxy- and 2-(N-phenylamino)-1-propanol was also investigated over the temperature range 638-792 K. The kinetic results and products analysis lend support to a reaction pathway involving a five-membered cyclic polar transition state. Copyright

Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase

Gorla, Suresh Kumar,Kavitha, Mandapati,Zhang, Minjia,Chin, James En Wai,Liu, Xiaoping,Striepen, Boris,Makowska-Grzyska, Magdalena,Kim, Youngchang,Joachimiak, Andrzej,Hedstrom, Lizbeth,Cuny, Gregory D.

, p. 4028 - 4043 (2013/06/27)

Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5′-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD +. The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC 50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD 50 > 50 μM) against a panel of four mammalian cells lines.

A new method for production of chiral 2-aryloxypropanoic acids using effective kinetic resolution of racemic 2-aryloxycarboxylic acids

Tengeiji, Atsushi,Nakata, Kenya,Ono, Keisuke,Shiina, Isamu

, p. 1227 - 1252 (2013/08/23)

We report a novel method for the preparation of 2-aryloxypropanoic acids by kinetic resolution of racemic 2-aryloxypropanoic acids using enantioselective esterification. The usage of pivalic anhydride (Piv2O) as an activating agent, bis(a-naphthyl)methanol ((α-Np)2CHOH) as an achiral alcohol, and (+)-benzotetramisole ((+)-BTM) as a chiral acyl-transfer catalyst enables the effective separation of various racemic 2-aryloxypropanoic acids to afford optically active carboxylic acids and the corresponding esters with high enantioselectivities. Furthermore, theoretical calculations of the transition states required to form the chiral esters successfully proved the enantiomer recognition mechanism of the asymmetric esterification.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 101-10-0