247113-86-6Relevant articles and documents
Discovery and Optimization of Chromeno[2,3-c]pyrrol-9(2H)-ones as Novel Selective and Orally Bioavailable Phosphodiesterase 5 Inhibitors for the Treatment of Pulmonary Arterial Hypertension
Wu, Deyan,Zhang, Tianhua,Chen, Yiping,Huang, Yadan,Geng, Haiju,Yu, Yanfa,Zhang, Chen,Lai, Zengwei,Wu, Yinuo,Guo, Xiaolei,Chen, Jianwen,Luo, Hai-Bin
, p. 6622 - 6637 (2017/08/17)
Phosphodiesterase 5 (PDE5) inhibitors have been used as clinical agents to treat erectile dysfunction and pulmonary arterial hypertension (PAH). Herein, we detail the discovery of a novel series of chromeno[2,3-c]pyrrol-9(2H)-one derivatives as selective and orally bioavailable inhibitors against phosphodiesterase 5. Medicinal chemistry optimization resulted in 2, which exhibits a desirable inhibitory potency of 5.6 nM with remarkable selectivity as well as excellent pharmacokinetic properties and an oral bioavailability of 63.4%. In addition, oral administration of 2 at a dose of 5.0 mg/kg caused better pharmacodynamics effects on both mPAP (mean pulmonary artery pressure) and RVHI (index of right ventricle hypertrophy) than sildenafil citrate at a dose of 10.0 mg/kg. These activities along with its reasonable druglike properties, such as human liver microsomal stability, cytochrome inhibition, hERG inhibition, and pharmacological safety, indicate that 2 is a potential candidate for the treatment of PAH.
Ligand-enabled β-C-H arylation of α-amino acids using a simple and practical auxiliary
Chen, Gang,Shigenari, Toshihiko,Jain, Pankaj,Zhang, Zhipeng,Jin, Zhong,He, Jian,Li, Suhua,Mapelli, Claudio,Miller, Michael M.,Poss, Michael A.,Scola, Paul M.,Yeung, Kap-Sun,Yu, Jin-Quan
, p. 3338 - 3351 (2015/03/30)
Pd-catalyzed β-C-H functionalizations of carboxylic acid derivatives using an auxiliary as a directing group have been extensively explored in the past decade. In comparison to the most widely used auxiliaries in asymmetric synthesis, the simplicity and practicality of the auxiliaries developed for C-H activation remains to be improved. We previously developed a simple N-methoxyamide auxiliary to direct β-C-H activation, albeit this system was not compatible with carboxylic acids containing α-hydrogen atoms. Herein we report the development of a pyridine-type ligand that overcomes this limitation of the N-methoxyamide auxiliary, leading to a significant improvement of β-arylation of carboxylic acid derivatives, especially α-amino acids. The arylation using this practical auxiliary is applied to the gram-scale syntheses of unnatural amino acids, bioactive molecules, and chiral bis(oxazoline) ligands.
LIGAND-CONTROLLED C(SP3)-H ARYLATION AND OLEFINATION IN SYNTHESIS OF UNNATURAL CHIRAL ALPHA AMINO ACIDS
-
Page/Page column 236; 238; 239; 240, (2015/10/05)
The use of ligands to tune the reactivity and selectivity of transition metal-catalysts for C(-sp3)-H bond functionalization is a central challenge in synthetic organic chemistry. Herein, we report a rare example of catalyst-controlled C(sp3)-H arylation using pyridine and quinoline derivatives: the former promotes exclusive monoarylation, whereas the latter activates the catalyst further to achieve diarylation. Successive application of these ligands enables the sequential diarylation of a methyl group in an alanine derivative with two different aryl iodides, affording a wide range of β-Ar-p-Ar ' -cc-amino acids with excellent levels of diastereoselectivity (d.r. > 20:1). Both configurations of the β-chiral center can be accessed by choosing the order in which the aryl groups are installed. The use of a quinoline derivative as a ligand also enables C(sp3)-H olefination of a protected alanine.