305347-21-1Relevant articles and documents
Discovery of benzimidazole derivatives as potent and selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with glucose consumption improving activity
Ma, Zonghui,Jiang, Ling,Li, Bingyan,Liang, Dailin,Feng, Yu,Liu, Li,Jiang, Cheng
, (2021/08/17)
Aldehyde dehydrogenase 1A1 (ALDH1A1) plays vital physiological and toxicological functions in many areas, such as CNS, inflammation, metabolic disorders, and cancers. Overexpression of ALDH1A1 has been disclosed to play an important role in obesity, diabetes and other diseases, indicating the potential need for the identification and development of small molecule ALDH1A1 inhibitors. Herein, a series of benzimidazole derivatives was designed, synthesized and evaluated. Among them, compounds 21, 27, 29, 61 and 65 exhibited excellent inhibitory activity against ALDH1A1 with IC50 values in the low micromolar range and high selectivity over ALDH1A2, ALDH1A3, ALDH2 and ALDH3A1. Moreover, an in vitro study demonstrated that all five compounds effectively improved glucose consumption in HepG2 cells, of which, 61 and 65 at 10 μM produced nearly equal glucose consumption with positive control Metformin (Met) at 1 mM. Furthermore, 61 and 65 showed desirable metabolic stability in human liver microsomes. All these results suggest that 61 and 65 are suitable for further studies.
Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents
Wang, Rubing,Chen, Chengsheng,Zhang, Xiaojie,Zhang, Changde,Zhong, Qiu,Chen, Guanglin,Zhang, Qiang,Zheng, Shilong,Wang, Guangdi,Chen, Qiao-Hong
, p. 4713 - 4726 (2015/06/25)
Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles. (Chemical Equation Presented).