37859-25-9Relevant articles and documents
Synthesis and evaluation of benzenesulfonic acid derivatives as human neutrophil elastase (hNE) inhibitors
Xu, Yanzhao,Qi, Na,Wen, Hui,Zhang, Gang,Wang, Yuchen,Cui, Huaqing
, p. 387 - 398 (2021)
Herein we report our investigation concerning the development of Human neutrophil elastase (hNE) inhibitors for the treatment of Acute Respiratory Distress Syndrome (ARDS). Various benzenesulfonic acid derived compounds were synthesized and evaluated as competitive inhibitors of hNE. Biological screening revealed that compound 4f shows moderate inhibitory activity (IC50 = 35.2 μM) against hNE. Compound 4f was also superimposed onto the active center of hNE to understand the binding mode.
Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B
Chen, Jingyun,Chen, Shufang,Jiang, Jun,Lu, Qianqian,Shi, Liyang,Xu, Zekun,Yimei, Zhao
supporting information, (2021/11/09)
A highly regio- and stereoselective sulfonylation of allenes was developed that provided direct access to α, β-substituted unsaturated sulfone. By means of visible-light photoredox catalysis, the free radicals produced by p-toluenesulfonic acid reacted with multisubstituted allenes to obtain Markovnikov-type vinyl sulfones with Ru(bpy)3Cl2 or Rhodamine B as photocatalyst. The yield of this reaction could reach up to 91%. A series of unsaturated sulfones would be used for further transformation to some valuable compounds.
SUBSTITUTED 1,2,4-OXADIAZOLES AS SMALL MOLECULE INHIBITORS OF UBIQUITIN-SPECIFIC PROTEASE 28
-
Paragraph 00195, (2022/02/28)
The present disclosure relates to a compound of formula (I) or a pharmaceutically acceptable salt thereof, and to a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier. The disclosure also relates to a method of treating a disease or disorder associated with ubiquitin-specific protease 28 (USP28) a method of treating cancer, and a method of inhibiting USP28, comprising administering to a subject in need thereof a compound of formula (I).
Novel Pyridine-Based Hydroxamates and 2′-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity
Zwergel, Clemens,Di Bello, Elisabetta,Fioravanti, Rossella,Conte, Mariarosaria,Nebbioso, Angela,Mazzone, Roberta,Brosch, Gerald,Mercurio, Ciro,Varasi, Mario,Altucci, Lucia,Valente, Sergio,Mai, Antonello
, p. 989 - 999 (2020/12/17)
Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6–8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c–f, and 11 a–f) and 2′-aminoanilides (10 a–f and 12 a–f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50: 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2′-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50HDAC3=0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.
Identification of BR102910 as a selective fibroblast activation protein (FAP) inhibitor
Jung, Hui Jin,Nam, Eun Hye,Park, Jin Young,Ghosh, Prithwish,Kim, In Su
supporting information, (2021/02/26)
Fibroblast activation protein (FAP) belongs to the family of prolyl-specific serine proteases and displays both exopeptidase and endopeptidase activities. FAP expression is undetectable in most normal adult tissues, but is greatly upregulated in sites of tissue remodeling, which include fibrosis, inflammation and cancer. Due to its restricted expression pattern and dual enzymatic activities, FAP inhibition is investigated as a therapeutic option for several diseases. In the present study, we described the structure–activity relationship of several synthesized compounds against DPPIV and prolyl oligopeptidase (PREP). In particular, BR102910 (compound 24) showed nanomolar potency and high selectivity. Moreover, the in vivo FAP inhibition study of BR102910 (compound 24) using C57BL/6J mice demonstrated exceptional profiles and satisfactory FAP inhibition efficacy. Based on excellent in vitro and in vivo profiles, the potential of BR102910 (compound 24) as a lead candidate for the treatment of type 2 diabetes is considered.
The organocatalytic enantiodivergent fluorination of β-ketodiaryl-phosphine oxides for the construction of carbon-fluorine quaternary stereocenters
Xie, Shaolei,He, Zhi-Juan,Zhang, Ling-Hui,Huang, Bo-Lun,Chen, Xiao-Wei,Zhan, Zong-Song,Zhang, Fu-Min
supporting information, p. 2069 - 2072 (2021/03/01)
Commercially available cinchona alkaloids that can catalyze the enantiodivergent fluorination of β-ketodiarylphosphine oxides were developed to construct carbon-fluorine quaternary stereocenters. This protocol features a wide scope of substrates and excellent enantioselectivities, and it is scalable.
METHOD FOR MANUFACTURING AROMATIC NITRILE COMPOUND
-
Paragraph 0264, (2021/03/19)
The present invention provides a method for industrially producing a highly pure aromatic nitrile compound and a highly pure aromatic carboxylic acid compound safely and highly efficiently at low costs. Compound (2) is subjected to Willgerodt reaction in the presence of an additive as necessary, and the obtained amide compound (3) is hydrolyzed and neutralized to give carboxylic acid compound (4). Carboxylic acid compound (4) is reacted with a halogenating agent in the presence of a catalyst as necessary in an organic solvent, and further reacted with an amidating agent, and the obtained amide compound (5) or (6) is reacted with a dehydrating agent to give nitrile compound (1). Alternatively, carboxylic acid compound (4) is reacted with a halogenating agent and a compound represented by the formula R6SO2R7 in the presence of a catalyst as necessary in an organic solvent to give nitrile compound (1). Np is a naphthyl group optionally having substituent(s), R5 is an alkylene group having 1-3 carbon atoms, and other symbols are as described in the DESCRIPTION.
Photoinduced Diverse Reactivity of Diazo Compounds with Nitrosoarenes
Roy, Sourav,Kumar, Gourav,Chatterjee, Indranil
supporting information, p. 6709 - 6713 (2021/09/08)
A diverse reactivity of diazo compounds with nitrosoarene in an oxygen-transfer process and a formal [2 + 2] cycloaddition is reported. Nitosoarene has been exploited as a mild oxygen source to oxidize an in situ generated carbene intermediate under visible-light irradiation. UV-light-mediated in situ generated ketenes react with nitosoarenes to deliver oxazetidine derivatives. These operationally simple processes exemplify a transition-metal-free and catalyst-free protocol to give structurally diverse α-ketoesters or oxazetidines.
Quantitative activity-activity relationship (QAAR) driven design to develop hydroxamate derivatives of pentanoic acids as selective HDAC8 inhibitors: synthesis, biological evaluation and binding mode of interaction studies
Amin, Sk. Abdul,Trivedi, Prakruti,Adhikari, Nilanjan,Routholla, Ganesh,Vijayasarathi, Dhanya,Das, Sanjib,Ghosh, Balaram,Jha, Tarun
, p. 17149 - 17162 (2021/10/04)
Histone deacetylase 8 (HDAC8) has been implicated as a potential drug target of many diseases including cancer. HDAC8 isoform selectivity over other class-I HDACs is a major concern nowadays. In this work, a series of pentanoic acid based hydroxamates wit