39115-96-3Relevant articles and documents
Synthesis, characterization and antimicrobial screening of novel hydrazide ligand & It’s transition metal complexes
Bhale,Yadav,Tekale,Nawale,Marathe,Kendrekar,Pawar
, p. 938 - 942 (2019)
Different transition metal complexes were synthesized from novel 3-bromo-2-[1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)ethylidene]hydrazide ligand (H2L) and characterized by spectral techniques. The synthesized ligand was found to act mono as well as di deprotonated (OH, NH) manner and stoichiometry of the ligand to metal ions was confirmed to be 1:1 in case of complex using metal chloride salts, whereas 1:2 in case of metal(II) complexes using metal acetate(II) salt. Structures of metal complexes were confirmed by IR,1H NMR, TGA, XRD, elemental analysis and UV technique which revealed that Mn(II), Co(II), Ni(II), Cu(II) complexes were octahedral geometry and those of Cu(II), Zn(II) showed square planner and tetrahedral geometry around metal ion respectively. Furthermore H2L and its metal complexes were screened for antimicrobial activity which showed that ligand enhanced its biological activity after coordination with metal ions. In particular, Cd(II) and Mn(II) complexes exhibited excellent antifungal activity.
Synthesis, fungicidal activity, and 3D-QSAR of tetrazole derivatives containing phenyloxadiazole moieties
Li, Yi-Tao,Yao, Wen-Qiang,Zhou, Si,Xu, Jun-Xing,Lu, Hui,Lin, Jian,Hu, Xiao-Yun,Zhang, Shao-Kai
supporting information, (2021/01/11)
In an effort to discover new agents with good fungicidal activities against CDM (cucumber downy mildew), a series of tetrazole derivatives containing phenyloxadiazole moieties were designed and synthesized. The EC50 values for fungicidal activities against CDM were determined. Bioassay results indicated that most synthesized compounds exhibited potential in vivo fungicidal activity against CDM. A CoMFA (comparative molecular field analysis) model based on the bioactivity was developed to identify some primary structural quality for the efficiency. The values of q2 and r2 for the established model were 0.791 and 0.982 respectively, which reliability and predict abilities were verified. Three analogues (q3, q4, q5) were designed and synthesized based on the model. All these compounds exhibited significant fungicidal activity on CDM with the EC50 of 1.43, 1.52, 1.77 mg·L?1. This work could provide a useful instruction for the further structure optimization.
Development of phenyltriazole thiol-based derivatives as highly potent inhibitors of DCN1-UBC12 interaction
Zhou, Wenjuan,Xu, Chenhao,Dong, Guanjun,Qiao, Hui,Yang, Jing,Liu, Hongmin,Ding, Lina,Sun, Kai,Zhao, Wen
, (2021/03/24)
Defective in cullin neddylation 1(DCN1) is a co-E3 ligase that is important for cullin neddylation. Dysregulation of DCN1 highly correlates with the development of various cancers. Herein, from the initial high-throughput screening, a novel hit compound 5a containing a phenyltriazole thiol core (IC50 value of 0.95 μM for DCN1-UBC12 interaction) was discovered. Further structure-based optimization leads to the development of SK-464 (IC50 value of 26 nM). We found that SK-464 not only directly bound to DCN1 in vitro, but also engaged cellular DCN1, suppressed the neddylation of cullin3, and hindered the migration and invasion of two DCN1-overexpressed squamous carcinoma cell lines (KYSE70 and H2170). These findings indicate that SK-464 may be a novel lead compound targeting DCN1-UBC12 interaction.
Identification and optimization of 3-bromo-N’-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives as mTOR inhibitors that induce autophagic cell death and apoptosis in triple-negative breast cancer
Xu, Tian,Zhang, Jifa,Yang, Chengcan,Pluta, Ryszard,Wang, Guan,Ye, Tinghong,Ouyang, Liang
, (2021/04/19)
Triple negative breast cancer (TNBC) has a worse prognosis than other types of breast cancer due to its special biological behavior and clinicopathological characteristics. TNBC cell proliferation and progression to metastasis can be suppressed by inducing cytostatic autophagy. mTOR is closely related to autophagy and is involved in protein synthesis, nutrient metabolism and activating mTOR promotes tumor growth and metastasis. In this paper, we adopted the strategy of structure simplification, aimed to look for novel small-molecule inhibitors of mTOR by pharmacophore-based virtual screening and biological activity determination. We found a lead compound with 3-bromo-N’-(4-hydroxybenzylidene)-4-methylbenzohydrazide for rational drug design and structural modification, then studied its structure-activity relationship. After that, compound 7c with the best TNBC cells inhibitory activities and superior mTOR enzyme inhibitory activity was obtained. In addition, we found that compound 7c could induce autophagic cell death and apoptosis in MDA-MB-231 and MDA-MB-468 cell lines. In conclusion, these findings provide new clues for our 3-bromo-N’-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives, which are expected to become drug candidates for the treatment of TNBC in the future.
Theoretical and computational insight into the supramolecular assemblies of Schiff bases involving hydrogen bonding and C[sbnd]H…π interactions: Synthesis, X-ray characterization, Hirshfeld surface analysis, anticancer activity and molecular docking analysis
Andleeb, Hina,Danish, Lubna,Munawar, Shiza,Ahmed, Muhammad Naeem,Khan, Imtiaz,Ali, Hafiz Saqib,Tahir, Muhammad Nawaz,Simpson, Jim,Hameed, Shahid
, (2021/03/29)
The present study examines the significance of various non-covalent interactions in the supramolecular assembly of (E)-1-(1-(4-nitrophenyl)ethylidene)-2-phenylhydrazine 1c and (E)-3?bromo-N'-(1-phenylethylidene)benzohydrazide 2d. The synthesized compounds were fully characterized by spectroscopic methods and single crystal X-ray diffraction analysis. The topology of the supramolecular assemblies was controlled by various non-covalent interactions including classical hydrogen bonding, C[sbnd]H…π and Br…Br interactions which were examined in detail using several theoretical methods and DFT calculations. The optimized geometric parameters of compounds 1c and 2d were calculated using density functional theory (DFT/B3LYP) quantum chemical method with the 6–311++G(d,p) basis set using the crystallographic coordinates. Additionally, fragments contributing to the HOMO and LUMO molecular orbitals were investigated at the same level of theory. The nature and various types of intermolecular interactions in the crystal structures was also investigated by Hirshfeld surface analysis. The synthesized Schiff bases were also studied for their potential as drugs and physicochemical properties. Bioevaluation against four cancer cell lines (NCI-H460, NCI-H460/Bcl-2, MDA-MB-231 and MCF-7) showed that compound 1c was a more potent inducer of toxicity compared to 2d. The putative binding modes of the bioactive Schiff bases were investigated using molecular docking tools and the results revealed that both the inhibitors were stabilized in the active pocket of the enzyme via the formation of various interactions with the key amino acid residues.
Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker
Liu, Jie,Zhang, Guang-Yu,Zhang, Zhe,Li, Bo,Chai, Fei,Wang, Qi,Zhou, Zi-Dan,Xu, Ling-Ling,Wang, Shou-Kai,Jin, Zhen,Tang, You-Zhi
, (2021/05/17)
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85–110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.
4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors
Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois
supporting information, (2021/06/15)
In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.
New heparanase-inhibiting triazolo-thiadiazoles attenuate primary tumor growth and metastasis
Barash, Uri,Rangappa, Shobith,Mohan, Chakrabhavi Dhananjaya,Vishwanath, Divakar,Boyango, Ilanit,Basappa, Basappa,Vlodavsky, Israel,Rangappa, Kanchugarakoppal S.
, (2021/06/16)
Compelling evidence ties heparanase, an endoglycosidase that cleaves heparan sulfate side (HS) chains of proteoglycans, with all steps of tumor development, including tumor initiation, angiogenesis, growth, metastasis, and chemoresistance. Moreover, heparanase levels correlate with shorter postoperative survival of cancer patients, encouraging the development of heparanase inhibitors as anti-cancer drugs. Heparanase-inhibiting heparin/heparan sulfate-mimicking compounds and neutralizing antibodies are highly effective in animal models of cancer progression, yet none of the compounds reached the stage of approval for clinical use. The present study focused on newly synthesized triazolo–thiadiazoles, of which compound 4-iodo-2-(3-(p-tolyl)-[1,2,4]triazolo[3,4b][1,3,4]thiadiazol-6-yl)phenol (4-MMI) was identified as a potent inhibitor of heparanase enzymatic activity, cell invasion, experimental metastasis, and tumor growth in mouse models. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with small molecules that inhibit heparanase enzymatic activity. This result encourages the optimization of 4-MMI for preclinical and clinical studies primarily in cancer but also other indications (i.e., colitis, pancreatitis, diabetic nephropathy, tissue fibrosis) involving heparanase, including viral infection and COVID-19.
Synthesis and biological evaluation of honokiol derivatives bearing 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)oxazol-2(3h)-ones as potential viral entry inhibitors against sars-cov-2
Bai, Li-Ping,Guo, Yong,Jiang, Zhi-Hong,Liu, Jia-Zheng,Meng, Jie-Ru,Xu, Ting,Zheng, Zhi-Yuan
, (2021/09/08)
The 2019 coronavirus disease (COVID-19) caused by SARS-CoV-2 virus infection has posed a serious danger to global health and the economy. However, SARS-CoV-2 medications that are specific and effective are still being developed. Honokiol is a bioactive component from Magnoliae officinalis Cortex with damp-drying effect. To develop new potent antiviral molecules, a series of novel honokiol analogues were synthesized by introducing various 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)oxazol-2(3H)-ones to its molecule. In a SARS-CoV-2 pseudovirus model, all honokiol derivatives were examined for their antiviral entry activities. As a result, 6a and 6p demonstrated antiviral entry effect with IC50 values of 29.23 and 9.82 μM, respectively. However, the parental honokiol had a very weak antiviral activity with an IC50 value more than 50 μM. A biolayer interfero-metry (BLI) binding assay and molecular docking study revealed that 6p binds to human ACE2 protein with higher binding affinity and lower binding energy than the parental honokiol. A competitive ELISA assay confirmed the inhibitory effect of 6p on SARS-CoV-2 spike RBD’s binding with ACE2. Importantly, 6a and 6p (TC50 > 100 μM) also had higher biological safety for host cells than honokiol (TC50 of 48.23 μM). This research may contribute to the discovery of potential viral entrance inhibitors for the SARS-CoV-2 virus, although 6p’s antiviral efficacy needs to be validated on SARS-CoV-2 viral strains in a biosafety level 3 facility.
Development of Novel (+)-Nootkatone Thioethers Containing 1,3,4-Oxadiazole/Thiadiazole Moieties as Insecticide Candidates against Three Species of Insect Pests
Cheng, Wanqing,Fan, Jiangping,Guo, Yong,Han, Meiyue,Ma, Nannan,Yan, Xiaoting,Yang, Ruige
, p. 15544 - 15553 (2022/01/03)
To improve the insecticidal activity of (+)-nootkatone, a series of 42 (+)-nootkatone thioethers containing 1,3,4-oxadiazole/thiadiazole moieties were prepared to evaluate their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal evaluation revealed that most of the title derivatives exhibited more potent insecticidal activities than the precursor (+)-nootkatone after the introduction of 1,3,4-oxadiazole/thiadiazole on (+)-nootkatone. Among all of the (+)-nootkatone derivatives, compound 8c (1 mg/mL) exhibited the best growth inhibitory (GI) activity against M. separata with a final corrected mortality rate (CMR) of 71.4%, which was 1.54- and 1.43-fold that of (+)-nootkatone and toosendanin, respectively; 8c also displayed the most potent aphicidal activity against M. persicae with an LD50 value of 0.030 μg/larvae, which was closer to that of the commercial insecticidal etoxazole (0.026 μg/larvae); and 8s showed the best larvicidal activity against P. xylostella with an LC50 value of 0.27 mg/mL, which was 3.37-fold that of toosendanin and slightly higher than that of etoxazole (0.28 mg/mL). Furthermore, the control efficacy of 8s against P. xylostella in the pot experiments under greenhouse conditions was better than that of etoxazole. Structure-activity relationships (SARs) revealed that in most cases, the introduction of 1,3,4-oxadiazole/thiadiazole containing halophenyl groups at the C-13 position of (+)-nootkatone could obtain more active derivatives against M. separata, M. persicae, and P. xylostella than those containing other groups. In addition, toxicity assays indicated that these (+)-nootkatone derivatives had good selectivity to insects over nontarget organisms (normal mammalian NRK-52E cells and C. idella and N. denticulata fries) with relatively low toxicity. Therefore, the above results indicate that these (+)-nootkatone derivatives could be further explored as new lead compounds for the development of potential eco-friendly pesticides.