566190-50-9Relevant articles and documents
Chemo-Enzymatic Oxidative Rearrangement of Tertiary Allylic Alcohols: Synthetic Application and Integration into a Cascade Process
Brenna, Elisabetta,Crotti, Michele,De Pieri, Matteo,Gatti, Francesco G.,Manenti, Gabriele,Monti, Daniela
supporting information, p. 3677 - 3686 (2018/06/04)
A chemo-enzymatic catalytic system, comprised of Bobbitt's salt and laccase from Trametes versicolor, allowed the [1,3]-oxidative rearrangement of endocyclic allylic tertiary alcohols into the corresponding enones under an Oxygen atmosphere in aqueous media. The yields were in most cases quantitative, especially for the cyclopent-2-en-1-ol or the cyclohex-2-en-1-ol substrates without an electron withdrawing group (EWG) on the side chain. Transpositions of macrocyclic alkenols or tertiary alcohols bearing an EWG on the side chain were instead carried out in acetonitrile by using an immobilized laccase preparation. Dehydro-Jasmone, dehydro-Hedione, dehydro-Muscone and other fragrance precursors were directly prepared with this procedure, while a synthetic route was developed to easily transform a cyclopentenone derivative into trans-Magnolione and dehydro-Magnolione. The rearrangement of exocyclic allylic alcohols was tested as well, and a dynamic kinetic resolution was observed: α,β-unsaturated ketones with (E)-configuration and a high diastereomeric excess were synthesized. Finally, the 2,2,6,6-tetramethyl-1-piperidinium tetrafluoroborate (TEMPO+BF4?)/laccase catalysed oxidative rearrangement was combined with the ene-reductase/alcohol dehydrogenase cascade process in a one-pot three-step synthesis of cis or trans 3-methylcyclohexan-1-ol, in both cases with a high optical purity. (Figure presented.).
Highly chemoselective coupling of allenylstannanes with organic iodides promoted by Pd(PPh3)4/LiCl: An efficient method for the synthesis of substituted allenes
Huang, Chih-Wei,Shanmugasundaram, Muthian,Chang, Hao-Ming,Cheng, Chien-Hong
, p. 3635 - 3641 (2007/10/03)
An efficient method for the preparation of various monosubstituted arylallenes, disubstituted allenes and alkenylallenes via palladium-catalyzed coupling of allenylstannanes with aryl iodides or alkenyl iodides is described. The coupling reaction was carr