66574-84-3Relevant articles and documents
Minisci-Type Alkylation of N-Heteroarenes by N-(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light
Kyne, Sara Helen,Li, Jiacheng,Siang Tan, Suan,Wai Hong Chan, Philip
supporting information, (2022/01/11)
A synthetic method that enables the Hantzsch ester-mediated Minisci-type C2-alkylation of quinolines, isoquinolines and pyridines by N-(acyloxy)phthalimide esters (NHPI) under blue LED (light emitting diode) light (456 nm) is described. Achieved under mild reaction conditions at room temperature, the metal-free synthetic protocol was shown to be applicable to primary, secondary and tertiary NHPIs to give the alkylated N-heterocyclic products in yields of 21–99%. On introducing a chiral phosphoric acid, an asymmetric version of the reaction was also realised and provided product enantiomeric excess (ee) values of 53–99%. The reaction mechanism was delineated to involve excitation of an electron-donor acceptor (EDA) complex, formed from weak electrostatic interactions between the Hantzsch ester and NHPI, which generates the posited radical species of the redox active ester that undergoes addition to the N-heterocycle.
Bio- And Medicinally Compatible α-Amino-Acid Modification via Merging Photoredox and N-Heterocyclic Carbene Catalysis
Chen, Lei,Du, Ding,Feng, Jie,Gao, Jian,Lu, Tao,Ma, Rui,Shi, Zhihao,Zhang, Kuili
supporting information, (2020/09/02)
An N-heterocyclic carbene and photoredox cocatalyzed α-amino-acid decarboxylative carbonylation reaction is presented. This method displays good scope generality, providing a direct pathway to access various downstream α-amino ketones under bio- and medicinally compatible conditions. Moreover, this strategy is appealing to chemical biology because it has great potential for the chemical modification of peptides or the late-stage synthesis of keto-peptides.