Welcome to LookChem.com Sign In|Join Free

CAS

  • or

881-73-2

Post Buying Request

881-73-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

881-73-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 881-73-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,8 and 1 respectively; the second part has 2 digits, 7 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 881-73:
(5*8)+(4*8)+(3*1)+(2*7)+(1*3)=92
92 % 10 = 2
So 881-73-2 is a valid CAS Registry Number.

881-73-2Relevant articles and documents

Novel panaxadiol triazole derivatives induce apoptosis in HepG-2 cells through the mitochondrial pathway

Xiao, Shengnan,Wang, Xude,Xu, Lei,Li, Tao,Cao, Jiaqing,Zhao, Yuqing

, (2020/07/23)

In this study, we introduced 1, 2, 4-triazole groups into panaxadiol (PD) to obtain 18 panaxadiol triazole derivatives. Five cancer cells and one normal cell were evaluated for cytotoxicity by MTT assay. The results showed that most of the derivatives could inhibit cancer cell proliferation, and the anti-proliferative activity of compound A1 was the most significant. For HepG-2 cells, the IC50 value was 4.21 ± 0.54 μM, which was nearly 15 times higher than the activity of PD. Further studies showed that compound A1 could induce apoptosis in HepG-2 cells, and could enhance the expression of Cl-caspase-3, Cl-caspase-9 and Cl-PARP. Moreover, Western blot analysis showed that after treating HepG-2 cells with compound A1, the expression of p53 protein was increased and the ratio of Bax/Bcl-2 was gradually increased. The cytoplasmic Bax is then translocated to the mitochondria, causing the release of Cyt c protein. Therefore, the results indicate that compound A1 induces apoptosis through the mitochondrial pathway and can be used the potential to develop new anti-proliferative agents.

Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis

Channar, Pervaiz Ali,Saeed, Aamer,Larik, Fayaz Ali,Rashid, Sajid,Iqbal, Qaiser,Rozi, Maryam,Younis, Saima,Mahar, Jamaluddin

, p. 499 - 513 (2017/08/08)

Ten fused heterocyclic derivatives bearing the 2,6-di(subsituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as central rings were synthesized and structures of the compounds were established by analytical and spectral data using FTIR, EI-MS, 1H NMR and 13C NMR techniques. In vitro inhibitory activities of synthesized compounds on α-amylase, α-glucosidase and α-burylcholinesterase (α-BuChE) were evaluated using a purified enzyme assays. Compound 5c demonstrated strong and selective α-amylase inhibitory activity (IC50?=?1.1?μmol/g). 5?g exhibited excellent inhibition against α-glucosidase (IC50?=?1.2?μmol/g) when compared with acarbose (IC50?=?4.7?μmol/g) as a positive reference. Compound 5i was found to be most potent derivative against α-BuChE with the IC50 of 1.5?μmol/g which was comparable to the value obtained for (4.7?μmol/g) positive control (i.e. galantamine hydrobromide). Molecular dockings of synthesized compounds into the binding sites of human pancreatic α-amylase, intestinal maltase-glucoamylase and neuronal α-butrylcholinesterase allowed to shed light on the affinity and binding mode of these novel inhibitors. Preliminary structure–activity relationship (SAR) studies were carried out to understand the relationship between molecular structural features and inhibition activities of synthesized derivatives. These data suggested that compounds 5c, 5?g and 5i are promising candidates for hitto- lead follow-up in the drug-discovery process for the treatment of Alzheimer's disease and hyperinsulinamia.

An efficient nonconventional glycerol-based solid acid catalyzed synthesis and biological evaluation of phosphonate conjugates of 1,2,4-triazole thiones

Murty, Madugula S.R.,Katiki, Mohana R.,Rao, Busam R.,Narayanan, Sai S.,Anto, Ruby J.,Buddana, Sudhreer K.,Prakasham, Reddy S.,Devi, Bethala L.A.P.,Prasad, Rachapudi B.N.

, p. 968 - 981 (2016/10/31)

A series of diethyl (3-((5-aryl-1H-1,2,4-triazol-3-yl)thio)propyl)phos-phonates (7a-t) has been synthesized in excellent yields by coupling diethyl (3-bromopropyl)phosphonate and 5-aryl-1H- 1,2,4-triazol-3-thiones employing an efficient, green and nonconventional heterogeneous SO3Hcarbon catalyst derived from glycerol. In addition, a facile and green approach for the esterification of carboxylic acids by utilizing glycerol-based solid acid catalyst has been reported. Structures of the synthesized compounds were characterized by IR, NMR and HRMS studies. These triazole derivatives were screened for their in vitro cytotoxicity using the standard MTT (3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetra-zolium bromide) assay against a panel of five different human cancer cell lines (HeLa: Cervix, A549: Lung, A375: Skin, MDA-MB-231: Breast and T98G: Brain). The antimicrobial activities of the synthesized compounds were investigated against four bacterial strains: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and three fungal strains: Aspergillus Niger, Aspergillus terreus, Aspergillus fumigatus. Preliminary results indicate that the compound 7f displayed maximum anticancer activity and the compounds 7d, 7e, 7f, 7m and 7q exhibited moderate antibacterial activity. The compounds 7g, 7h, 7o and 7p showed good antifungal activity with high inhibition zone diameter compared to the standard drug.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 881-73-2