88495-55-0Relevant articles and documents
Development and Scale-Up of an Asymmetric Synthesis Process for Alogliptin
Yamada, Masatoshi,Hirano, Sayuri,Tsuruoka, Ryoji,Takasuga, Masahiro,Uno, Kenichi,Yamaguchi, Kotaro,Yamano, Mitsuhisa
, p. 327 - 336 (2021/03/01)
Alogliptin (1) benzoate is a potent, highly selective inhibitor of serine protease dipeptidyl-peptidase IV, approved by US FDA for the treatment of type 2 diabetes. Herein, we report a more cost-effective process that includes ruthenium-catalyzed asymmetric hydrogenation followed by Hofmann rearrangement of 2-((6-chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)benzonitrile (10) to introduce a chiral amino moiety at a late stage. Use of an inexpensive and readily available nicotinamide (6) for a chiral aminopiperidine core and iodobenzene diacetate (PIDA) under mild and specific conditions allowed us to access 1 with excellent total yield and comparable quality to that manufactured by the original process.
PROCESS FOR PRODUCING HETEROCYCLIC COMPOUND
-
, (2017/04/11)
The present invention provides a method of efficiently producing an optically active 6-(3-aminopiperidin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidine derivative. The optically active piperidine-3-carboxamide or a derivative thereof, which is obtained by subjecting 1,4,5,6-tetrahydropyridine-3-carboxamide or a derivative thereof to an asymmetric reduction in the presence of a catalyst, is used as an intermediate.
Characterization of an enantioselective amidase from Cupriavidus sp. KNK-J915 (FERM BP-10739) useful for enzymatic resolution of racemic 3-piperidinecarboxamide
Nojiri, Masutoshi,Taoka, Naoaki,Yasohara, Yoshihiko
, p. 136 - 142 (2014/12/10)
A novel amidase (CsAM) acting on (R,S)-N-benzyl-3-piperidinecarboxamide was purified from Cupriavidus sp. KNK-J915 (FERM BP-10739) and characterized. The enzyme acts on (R,S)-N-benzyl-3-piperidinecarboxamide S-selectively to yield (R)-N-benzyl-3-piperidinecarboxamide. Analytical gel filtration column chromatography and SDS-PAGE revealed that the enzyme is a tetramer with a subunit of approximately 47 kDa. It has a broad substrate spectrum against nitrogen-containing heterocyclic amides. Its optimal pH and temperature are 8.0-9.0 and 50 °C, respectively. The CsAM gene was cloned and sequenced, and it was found to comprise 1341 bp and encode a polypeptide of 46,388 Da. The deduced amino acid sequence exhibited 78% identity to that of a putative amidase (CnAM) from Cupriavidus necator JMP134. The cultured cells of recombinant Escherichia coli producing CnAM could be used for the S-selective hydrolysis of (R,S)-N-benzyl-3-piperidinecarboxamide but could not be used for the S-selective hydrolysis of (R,S)-3-piperidinecarboxamide because of its very low level of selectivity. In contrast, the cultured cells of recombinant E. coli producing CsAM could hydrolyze both (R,S)-N-benzyl-3-piperidinecarboxamide and (R,S)-3-piperidinecarboxamide with high S-selectivity.
METHOD FOR PRODUCING OPTICALLY ACTIVE 3-AMINOPIPERIDINE OR SALT THEREOF
-
Page/Page column 15, (2010/05/13)
The present invention relates to a method for producing an optically active 3-aminopiperidine or salt thereof. In the method, a racemic nipecotamide is stereoselectively hydrolyzed to obtain an optically active nipecotamide and an optically active nipecotic acid in the presence of an enzyme source derived from an organism, and then the optically active nipecotamide is derived into an optically active aminopiperidine or salt thereof by aroylation, Hofmann rearrangement, deprotection of the amino group and further deprotection; or the optically active nipecotamide is derived into an optically active aminopiperidine or salt thereof by selective protection with BOC, Hofmann rearrangement and further deprotection. It is possible by the present invention to produce an optically active 3-aminopiperidine or salt thereof useful as a pharmaceutical intermediate from an inexpensive and easily available starting material by easy method applicable to industrial manufacturing.