9000-71-9Relevant articles and documents
Isogenic strain line of bacterium for producing polyhydroxyalkanoate in which polyhydroxyalkanoate synthase gene is disrupted and method for producing polyhydroxyalkanoate using the same
-
, (2009/05/29)
A host-vector system which is equipped with a substrate supply system enzyme for polyhydroxyalkanoate synthase and which is suitable for evolutionary engineering modification of polyhydroxyalkanoate synthase. An isogenic strain line is produced by disrupting a polyhydroxyalkanoate synthase gene of a bacterium for producing polyhydroxyalkanoate.
Radiolabelling Method Using Polymers
-
, (2009/01/20)
The present invention provides a method for the preparation of radioisotopically-labelled imaging agent compositions. The method uses precursors which are bound to soluble polymers, so that the radiolabelling reaction is carried out in solution. Also described are radiopharmaceutical compositions, automated versions of the radiolabelling method and disposable cassettes for use in the automated method.
Microencapsulated pendimethalin and method of making and using same
-
, (2008/06/13)
Pendimethalin microencapsulated in a microcapsule comprised of a water-soluble film forming polymer. The present invention also includes a method of microencapsulating low-melting agriculturally active materials, such as pendimethalin. The microencapsulation process comprises the steps of heating pendimethalin to a molten state. The molten pendimethalin is then combined with an aqueous solution of a water-soluble, film-forming polymer at a temperature sufficient to maintain the pendimethalin in its molten state. The pendimethalin is then emulsified in the aqueous solution so that the pendimethalin has a primary particle size of between approximately 0.1 and 10 microns. The resulting dispersion or emulsion is then spray dried at a temperature between approximately 50° C. and 220° C. so as to microencapsulate the pendimethalin in the polymer. Compounds for promoting the rapid solidification of the pendimethalin am also disclosed.
Microencapsulated agriculturally active material
-
, (2008/06/13)
Agriculturally active materials, such as pesticides, herbicides and the like and a process for microencapsulating said material. The present invention includes trifluralin having a polymorphic form characterized by a yellow color and a melting point of approximately 41°-43° C. The present invention also includes a method using the yellow polymorphic form of trifluralin as a herbicide. In addition, the present invention includes a method of microencapsulating low-melting agriculturally active materials, such as trifluralin. The microencapsulation process comprises the steps of heating a low-melting, water-immiscible, agriculturally active material to a molten state. The molten active material is then combined with an aqueous solution of a water-soluble, film-forming polymer at a temperature sufficient to maintain the active material in its molten state. The active material is then dispersed or emulsified in the aqueous solution so that the active material has a primary particle size of between approximately 0.1 and 10 microns. The resulting dispersion or emulsion is then spray dried at a temperature between approximately 50° and 220° C. so as to microencapsulate the active material in the polymer. Compounds for promoting the rapid solidification of the active material are also disclosed.
Preparation having excellent absorption property
-
, (2008/06/13)
A preparation containing an absorption promoter selected from specific classes of water-soluble macromolecular compounds having chelating activity, preferably in the presence of a salt at a concentration such that the composition exhibits higher osmotic pressure than isotonic sodium chloride solution, and a medicine is found to promote absorption of the medicine through a gastrointestinal organ such as the colon, rectum, or vagina.