Welcome to LookChem.com Sign In|Join Free

CAS

  • or

931-88-4

Post Buying Request

931-88-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

931-88-4 Usage

General Description

Cyclooctene is a colorless liquid with a faint, sweet odor and is a member of the cycloalkene family. It is made up of a ring of eight carbon atoms and has the chemical formula C8H14. Cyclooctene is often used as a precursor in the synthesis of various compounds, including pharmaceuticals, agrochemicals, and specialty materials. It is also utilized in the production of polymers and as a solvent in chemical reactions. This chemical is considered to have low toxicity and is flammable, making it important to handle with care and store properly.

Check Digit Verification of cas no

The CAS Registry Mumber 931-88-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,3 and 1 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 931-88:
(5*9)+(4*3)+(3*1)+(2*8)+(1*8)=84
84 % 10 = 4
So 931-88-4 is a valid CAS Registry Number.
InChI:InChI=1/C8H14/c1-2-4-6-8-7-5-3-1/h1-2H,3-8H2/b2-1-

931-88-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma-Aldrich

  • (29648)  Cyclooctene  analytical standard

  • 931-88-4

  • 29648-1ML

  • 493.74CNY

  • Detail

931-88-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name cis-Cyclooctene

1.2 Other means of identification

Product number -
Other names 5-cyclooctadiene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Odor agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:931-88-4 SDS

931-88-4Relevant articles and documents

Diverse Mechanistic Pathways in Single-Site Heterogeneous Catalysis: Alcohol Conversions Mediated by a High-Valent Carbon-Supported Molybdenum-Dioxo Catalyst

Bedzyk, Michael J.,Das, Anusheela,Kratish, Yosi,Li, Jiaqi,Ma, Qing,Marks, Tobin J.

, p. 1247 - 1257 (2022/02/07)

With the increase in the importance of renewable resources, chemical research is shifting focus toward substituting petrochemicals with biomass-derived analogues and platform-molecule transformations such as alcohol processing. To these ends, in-depth mechanistic understanding is key to the rational design of catalytic systems with enhanced activity and selectivity. Here we discuss in detail the structure and reactivity of a single-site active carbon-supported molybdenum-dioxo catalyst (AC/MoO2) and the mechanism(s) by which it mediates alcohol dehydration. A range of tertiary, secondary, and primary alcohols as well as selected bio-based terpineols are investigated as substrates under mild reaction conditions. A combined experimental substituent effect/kinetic/kinetic isotope effect/EXAFS/DFT computational analysis indicates that (1) water assistance is a key element in the transition state; (2) the experimental kinetic isotopic effect and activation enthalpy are 2.5 and 24.4 kcal/mol, respectively, in good agreement with the DFT results; and (3) several computationally identified intermediates including Mo-oxo-hydroxy-alkoxide and cage-structured long-range water-coordinated Mo-dioxo species are supported by EXAFS. This structurally and mechanistically well-characterized single-site system not only effects efficient transformations but also provides insight into rational catalyst design for future biomass processes.

Selective C-O Bond Reduction and Borylation of Aryl Ethers Catalyzed by a Rhodium-Aluminum Heterobimetallic Complex

Hara, Naofumi,Nakao, Yoshiaki,Saito, Teruhiko,Seki, Rin

supporting information, p. 6388 - 6394 (2021/05/31)

We report the catalytic reduction of a C-O bond and the borylation by a rhodium complex bearing an X-Type PAlP pincer ligand. We have revealed the reaction mechanism based on the characterization of the reaction intermediate and deuterium-labeling experiments. Notably, this novel catalytic system shows steric-hindrance-dependent chemoselectivity that is distinct from conventional Ni-based catalysts and suggests a new strategy for selective C-O bond activation by heterobimetallic catalysis.

Ruthenium-Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism

Huang, Lin,Bismuto, Alessandro,Rath, Simon A.,Trapp, Nils,Morandi, Bill

supporting information, p. 7290 - 7296 (2021/03/01)

The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination of a redox-active ligand and a sterically hindered aryl radical intermediate has unleashed this novel strategy. Importantly, mechanistic investigations have been performed to provide a conceptual framework for the further development of this new catalytic dehydrogenation system.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 931-88-4