94-53-1Relevant articles and documents
Destructible Surfactants Based on a Silicon-Oxygen Bond
Jaeger, David A.,Ward, Mary Darlene
, p. 2221 - 2223 (1982)
A "destructible" surfactant based on the lability of a silicon-oxygen bond, trimethylammonium nitrate (1b), has been prepared and characterized along with the corresponding chloride (1a) and tetraphenylborate (1c).
Gram-scale synthesis of carboxylic acids via catalytic acceptorless dehydrogenative coupling of alcohols and hydroxides at an ultralow Ru loading
Chen, Cheng,Cheng, Hua,Verpoort, Francis,Wang, Zhi-Qin,Wu, Zhe,Yuan, Ye,Zheng, Zhong-Hui
, (2021/12/13)
Acceptorless dehydrogenative coupling (ADC) of alcohols and water/hydroxides is an emergent and graceful approach to produce carboxylic acids. Therefore, it is of high demand to develop active and practical catalysts/catalytic systems for this attractive transformation. Herein, we designed and fabricated a series of cyclometallated N-heterocyclic carbene-Ru (NHC-Ru) complexes via ligand tuning of [Ru-1], the superior complex in our previous work. Gratifyingly, gram-scale synthesis of carboxylic acids was efficiently enabled at an ultralow Ru loading (62.5 ppm) in open air. Moreover, effects of distinct ancillary NHC ligands and other parameters on this catalytic process were thoroughly studied, while further systematic studies were carried out to provide rationales for the activity trend of [Ru-1]-[Ru-7]. Finally, determination of quantitative green metrics illustrated that the present work exhibited superiority over representative literature reports. Hopefully, this study could provide valuable input for researchers who are engaging in metal-catalyzed ADC reactions.
Oxidation of Primary Alcohols and Aldehydes to Carboxylic Acids via Hydrogen Atom Transfer
Tan, Wen-Yun,Lu, Yi,Zhao, Jing-Feng,Chen, Wen,Zhang, Hongbin
supporting information, p. 6648 - 6653 (2021/09/08)
The oxidation of primary alcohols and aldehydes to the corresponding carboxylic acids is a fundamental reaction in organic synthesis. In this paper, we report a new chemoselective process for the oxidation of primary alcohols and aldehydes. This metal-free reaction features a new oxidant, an easy to handle procedure, high isolated yields, and good to excellent functional group tolerance even in the presence of vulnerable secondary alcohols and tert-butanesulfinamides.
Mechanistic studies into visible light-driven carboxylation of aryl halides/triflates by the combined use of palladium and photoredox catalysts
Caner, Joaquim,Iwasawa, Nobuharu,Martin, Ruben,Murata, Kei,Shimomaki, Katsuya,Toriumi, Naoyuki
supporting information, p. 1846 - 1853 (2021/08/13)
The reaction mechanism of palladium-catalyzed visible light-driven carboxylation of aryl halides and triflates with a photoredox catalyst was examined in detail. Experimental and theoretical studies indicated that the active species for photoredox- catalyzed reduction was cationic ArPd(II)+ species to generate nucleophilic ArPd(I) or its further reduced ArPd(0)- species, which reacted with CO2 to give carboxylic acids. Hydrodehalogenated compounds, main byproducts in this carboxylation, were thought to be generated by protonation of these reduced species.
Ni-NiO heterojunctions: a versatile nanocatalyst for regioselective halogenation and oxidative esterification of aromatics
Bhardwaj, Nivedita,Goel, Bharat,Indra, Arindam,Jain, Shreyans K.,Singh, Ajit Kumar,Tripathi, Nancy
, p. 14177 - 14183 (2021/08/16)
Herein, we report a facile method for the synthesis of Ni-NiO heterojunction nanoparticles, which we utilized for the nuclear halogenation reaction of phenol and substituted phenols usingN-bromosuccinimide (NBS). A remarkablepara-selectivity was achieved for the halogenated products under semi-aqueous conditions. Interestingly, blocking of thepara-position of phenol offeredortho-selective halogenation. In addition, the Ni-NiO nanoparticles catalyzed the oxidative esterification of carbonyl compounds with alcohol, diol or dithiol in the presence of a catalytic amount of NBS. It was observed that the aromatic carbonyls substituted with an electron-donating group favoured nuclear halogenation, whereas an electron-withdrawing group substitution in carbonyl compounds facilitated the oxidation reaction. In addition, the catalyst was magnetically separated and recycled 10 times. The tuned electronic structure at the Ni-NiO heterojunction controlled selectivity and activity as no suchpara-selectivity was observed with commercially available NiO or Ni nanoparticles.
One-Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem ortho-Naphthoquinone-Catalyzed and TBHP-Promoted Oxidation Sequence
Kim, Hun Young,Oh, Kyungsoo,Si, Tengda
supporting information, p. 18150 - 18155 (2021/12/09)
Biomimetic oxidation of primary amines to carboxylic acids has been developed where the copper-containing amine oxidase (CuAO)-like o-NQ-catalyzed aerobic oxidation was combined with the aldehyde dehydrogenase (ALDH)-like TBHP-mediated imine oxidation protocol. Notably, the current tandem oxidation strategy provides a new mechanistic insight into the imine intermediate and the seemingly simple TBHP-mediated oxidation pathways of imines. The developed metal-free amine oxidation protocol allows the use of molecular oxygen and TBHP, safe forms of oxidant that may appeal to the industrial application.
Cobalt-Catalyzed Deprotection of Allyl Carboxylic Esters Induced by Hydrogen Atom Transfer
Li, Nan,Gui, Yizhen,Chu, Mengqi,You, Mengdi,Qiu, Xiaohan,Liu, Hejia,Wang, Shiang,Deng, Meng,Ji, Baoming
supporting information, p. 8460 - 8464 (2021/11/13)
A brief, efficient method has been developed for the removal of the allyl protecting group from allyl carboxylic esters using a Co(II)/TBHP/(Me2SiH)2O catalytic system. This facile strategy displays excellent chemoselectivity, functional group tolerance, and high yields. This transformation probably occurs through the hydrogen atom transfer process, and a Co(III)-six-membered cyclic intermediate is recommended.
An efficient chromium(iii)-catalyzed aerobic oxidation of methylarenes in water for the green preparation of corresponding acids
Jiang, Feng,Liu, Shanshan,Wei, Yongge,Yan, Likai,Yu, Han,Zhao, Wenshu
supporting information, p. 12413 - 12418 (2021/09/28)
A highly efficient method to oxidize methylarenes to their corresponding acids with a reusable Cr catalyst was developed. The reaction can be carried out in water with 1 atm oxygen and K2S2O8as cooxidants, proceeds under green and mild conditions, and is suitable for the oxidation of both electron-deficient and electron-rich methylarenes, including heteroaryl methylarenes, even at the gram level. The excellent result, together with its simplicity of operation and the ability to continuously reuse the catalyst, makes this new methodology environmentally benign and cost-effective. The generality of this methodology gives it the potential for use on an industrial scale. Differing from the accepted oxidation mechanism of toluene, GC-MS studies and DFT calculations have revealed that the key benzyl alcohol intermediate is formed under the synergetic effect of the chromium and molybdenum in the Cr catalyst, which can be further oxidized to afford benzaldehyde and finally benzoic acid.
1,2-Dibutoxyethane-Promoted Oxidative Cleavage of Olefins into Carboxylic Acids Using O2 under Clean Conditions
Ou, Jinhua,Tan, Hong,He, Saiyu,Wang, Wei,Hu, Bonian,Yu, Gang,Liu, Kaijian
, p. 14974 - 14982 (2021/10/25)
Herein, we report the first example of an effective and green approach for the oxidative cleavage of olefins to carboxylic acids using a 1,2-dibutoxyethane/O2 system under clean conditions. This novel oxidation system also has excellent functional-group tolerance and is applicable for large-scale synthesis. The target products were prepared in good to excellent yields by a one-pot sequential transformation without an external initiator, catalyst, and additive.
Uncommon overoxidative catalytic activity in a new halo-tolerant alcohol dehydrogenase
Contente, Martina L.,Fiore, Noemi,Cannazza, Pietro,Roura Padrosa, David,Molinari, Francesco,Gourlay, Louise,Paradisi, Francesca
supporting information, p. 5679 - 5685 (2020/09/17)
Alcohol dehydrogenases (ADH) are versatile and useful enzymes employed as biocatalysts, especially for the selective oxidation of primary and secondary alcohols, and for the reduction of carbonyl moieties. A new alcohol dehydrogenase (HeADH-II) has been identified from the genome of the halo-adapted bacterium Halomonas elongata, which proved stable in the presence of polar organic solvents and salt exposure. Unusual for this class of enzymes, HeADH-II lacks enantiopreference and is capable of oxidizing both alcohols and aldehydes, enabling a direct overoxidation of primary alcohols to carboxylic acids. HeADH-II was coupled with a NADH-oxidase from Lactobacillus pentosus (LpNOX) to increase the process yields and allowing recycling of the cofactor. The enzymatic oxidation of primary alcohols was also paired with in situ condensation of the intermediate aldehydes with hydroxylamine to prepare the corresponding aldoximes, with particular attention to perillartine (a powerful sweetener), whose enzymatic synthesis starting from natural sources, leads to an equally natural product.