the residue was purified by column chromatography on silica gel
(AcOEt–hexane, 1 : 10) to give 9a (176 mg, 77%) as a yellow
liquid. 1H NMR (500 MHz, CDCl3) dH 0.87 (3H, t, J = 7.1 Hz),
1.30–1.35 (4H, m), 2.29 (2H, tdd, J = 7.0 Hz, JHF = 2.3, 2.3 Hz),
3.66 (2H, br s), 6.70–6.77 (2H, m), 7.00 (1H, dd, J = 7.6, 1.5 Hz),
7.12 (1H, ddd, J = 7.6, 7.6, 1.5 Hz). 13C NMR (126 MHz, CDCl3)
dC 13.8, 22.4, 27.7, 29.8 (dd, JCF = 3, 3 Hz), 89.1 (dd, JCF = 22,
Anal. found: C, 70.32; H, 6.28; N, 13.34, calcd for C12H13FN2: C,
70.57; H, 6.42; N, 13.72%.
4-(Butan-2-yl)-3-fluorocinnoline (10b). Compound 10b was
prepared by the method described for 10a using CH3CN
(3.0 mL), CF3CO2H (0.053 mL, 0.72 mmol), i-AmONO (0.10 mL,
0.72 mmol), 9b (76 mg, 0.36 mmol) and thiophenol (0.11 mL,
1.1 mmol). Purification by thin layer chromatography on silica gel
(AcOEt–hexane 1 : 5) gave 10b (64 mg, 87%) as a yellow liquid.
1H NMR (500 MHz, CDCl3) dH 0.87 (3H, t, J = 7.2 Hz), 1.49 (3H,
dd, J = 7.2 Hz, JHF = 1.5 Hz), 1.87–2.03 (2H, m), 3.57 (1H, tq, J =
7.2, 7.2 Hz), 7.75–7.80 (2H, m), 8.14–8.20 (1H, m), 8.48–8.54 (1H,
m). 13C NMR (126 MHz, CDCl3) dC 12.7, 18.9 (d, JCF = 3 Hz),
28.2 (d, JCF = 4 Hz), 33.0 (d, JCF = 3 Hz), 122.9 (d, JCF = 6 Hz),
125.8 (d, JCF = 22 Hz), 129.1 (d, JCF = 2 Hz), 129.4 (d, JCF = 7 Hz),
130.7, 131.5, 150.6, 162.4 (d, JCF = 238 Hz). 19F NMR (470 MHz,
CDCl3) dF 74.1 (br s). IR (neat) mmax 2960, 2940, 2860, 1565, 1525,
1435, 1315, 1235, 1130, 760 cm−1. MS (EI, 20 eV) m/z 204 (M+,
100%), 146 (34). Anal. found: C, 70.32; H, 6.54; N, 13.50, calcd
for C12H13FN2: C, 70.57; H, 6.42; N, 13.72%.
17 Hz), 115.6, 118.4, 119.0 (d, JCF = 3 Hz), 128.9, 130.6, (d, JCF
=
2 Hz), 144.3, 152.8 (dd, JCF = 290, 288 Hz). 19F NMR (470 MHz,
CDCl3) dF 68.7 (1F, d, JFF = 43 Hz), 72.7 (1F, d, JFF = 43 Hz).
IR (neat) mmax 3475, 3375, 2960, 2930, 2860, 1740, 1620, 1495,
1230 cm−1. MS (EI, 70 eV) m/z 211 (M+, 100%), 168 (59), 148
(43). Anal. found: C, 68.14; H, 7.07, N; 6.52, calcd for C12H15F2N:
C, 68.23; H, 7.16; N, 6.63%.
o-(1,1-Difluoro-3-methylpent-1-en-2-yl)aniline
(9b). Com-
pound 9b was prepared by the method described for 9a using
butyllithium (1.56 mL, 1.63 M in hexane, 2.5 mmol), CF3CH2OTs
(308 mg, 1.21 mmol), THF (10 mL), tri(butan-2-yl)borane
(1.33 mL, 1.0 M in THF, 1.33 mmol), HMPA (3.0 mL), triph-
enylphosphine (25 mg, 0.10 mmol), tris(dibenzylideneacetone)-
dipalladium–chloroform (1 : 1) (25 mg, 0.024 mmol), o-iodoaniline
(238 mg, 1.09 mmol), dibutylmagnesium (2.47 mL, 0.44 M in
Et2O, 1.09 mmol), THF (3.0 mL) and copper(I) iodide (230 mg,
1.21 mmol). Purification by thin layer chromatography on silica
gel (AcOEt–hexane, 1 : 5) gave 9b (157 mg, 68%) as a pale yellow
Acknowledgements
The present work is dedicated to Professor Kenji Uneyama, the
2007 recipient of the ACS Award for Creative Work in Fluorine
Chemistry.
We are grateful to Bayer CropScience K.K. for financial
support.
liquid. H NMR (500 MHz, (CD3)2SO, 100 ◦C) dH 0.99 (3H, t,
1
J = 7.3 Hz), 1.03–1.15 (3H, m), 1.31–1.45 (1H, m), 1.54–1.66 (1H,
m), 2.44–2.58 (1H, m), 4.58 (2H, br s), 6.62 (1H, ddd, J = 7.4, 7.4,
1.4 Hz), 6.79 (1H, d, J = 7.4 Hz), 6.92 (1H, d, J = 7.4 Hz), 7.07
(1H, ddd, J = 7.4, 7.4, 1.4 Hz). 13C NMR (126 MHz, (CD3)2SO,
100 ◦C) dC 10.1, 17.2, 26.9, 34.5, 92.4 (dd, JCF = 16, 16 Hz), 114.5,
115.4, 116.1, 127.8, 129.6, 145.8, 151.7 (dd, JCF = 290, 288 Hz).
References
1 (a) For a review on isoquinolines, see: K. W. Bentley, The Isoquinoline
Alkaloids, Harwood Academic, Amsterdam, 1998; (b) for a review on
isoquinoline N-oxides, see: A. Albini and S. Pietra, ed., Heterocyclic
N-Oxides, CRC Press, Boca Raton, 1991.
2 For a review on cinnolines, see: W. Lewgowd and A. Stanczak, Arch.
Pharm. (Weinheim, Ger.), 2007, 340, 65–80.
3 For isoquinoline synthesis, see: (a) M. lvarez and J. A. Joule, Sci. Synth.,
2004, 15, 661–838; (b) K. Kobayashi, K. Hayashi, K. Miyamoto, O.
Morikawa and H. Konishi, Synthesis, 2006, 2934–2938 and references
therein; (c) for isoquinoline N-oxide synthesis, see: T. Sakamoto, Y.
Kondo, N. Miura, K. Hayashi and H. Yamanaka, Heterocycles, 1986,
24, 2311–2314.
4 For cinnoline synthesis, see: (a) N. Haider and W. Holzer, Sci. Synth.,
2004, 16, 251–313; (b) A. Slevin, T. Koolmeister and M. Scobie, Chem.
Commun., 2007, 2506–2508; (c) N. A. Zolnikova, L. G. Fedenok and
N. E. Polyakov, Org. Prep. Proced. Int., 2006, 38, 476–480; (d) D. B.
Kimball, T. J. R. Weakley and M. M. Haley, J. Org. Chem., 2002, 67,
6395–6405 and references therein; (e) C. Ru¨chardt and V. Hassmann,
Liebigs Ann. Chem., 1980, 908–927.
5 For reviews, see: (a) M. J. Silvester, Adv. Heterocycl. Chem., 1994,
59, 1–38; (b) M. J. Silvester, Aldrichimica Acta, 1991, 24, 31–38;
(c) Organofluorine Chemistry: Principles and Commercial Applications,
ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum, New York, 1994;
(d) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity,
Applications, Wiley-VCH, Weinheim, 2004.
6 For cross-coupling of aryl fluorides, see: (a) T. J. Korn, M. A. Schade,
S. Wirth and P. Knochel, Org. Lett., 2006, 8, 725–728; (b) T. Saeki,
Y. Takashima and K. Tamao, Synlett, 2005, 1771–1774 and references
therein; (c) L. Ackermann, R. Born, J. H. Spatz and D. Meyer, Angew.
Chem., Int. Ed., 2005, 44, 7216–7219; (d) F. Mongin, L. Mojovic, B.
Guillamet, F. Tre´court and G. Que´guiner, J. Org. Chem., 2002, 67,
8991–8994; (e) T. Braun and R. N. Perutz, Chem. Commun., 2002,
2749–2757; (f) for nucleophilic replacement of heteroaryl fluorides, see:
E. Arzel, P. Rocca, P. Grellier, M. Labae¨ıd, F. Frappier, F. Gue´ritte, C.
Gaspard, F. Marsais, A. Godard and G. Que´guiner, J. Med. Chem.,
2001, 44, 949–960.
19F NMR (470 MHz, (CD3)2SO, 100 ◦C) dF 71.2 (1F, br d, JFF
=
49 Hz), 74.1 (1F, br d, JFF = 49 Hz). IR (neat) mmax 3390, 2960,
1730, 1615, 1495, 1455, 1300, 1215, 935, 750 cm−1. MS (EI, 70
eV) m/z 211 (M+, 100%), 182 (57), 162 (82). HRMS m/z calcd
for C12H15F2N 211.1173 (M+); found 211.1184.
4-Butyl-3-fluorocinnoline (10a). To a solution of 9a (65 mg,
0.31 mmol) in CH3CN (3.0 mL) were added CF3CO2H (0.045 mL,
0.61 mmol) and i-AmONO (0.081 mL, 0.61 mmol) at 0 ◦C, and the
reaction mixture was stirred for 30 min. The mixture was treated
with thiophenol (0.10 mL, 0.92 mmol) and then stirred for 30 min
at 0 ◦C. The reaction was quenched with phosphate buffer (pH 7),
and organic materials were extracted with AcOEt three times. The
combined extracts were washed with brine and dried over Na2SO4.
After removal of the solvent under reduced pressure, the residue
was purified by thin layer chromatography on silica gel (AcOEt–
hexane 1 : 5) to give 10a (55 mg, 88%) as a yellow liquid. 1H NMR
(500 MHz, CDCl3) dH 0.98 (3H, t, J = 7.6 Hz), 1.47 (2H, tq,
J = 7.6, 7.6 Hz), 1.71 (2H, tt, J = 7.6, 7.6 Hz), 3.09 (2H, t, J =
7.6 Hz), 7.76–7.80 (2H, m), 8.00–8.05 (1H, m), 8.48–8.52 (1H, m).
13C NMR (126 MHz, CDCl3) dC 13.8, 22.8, 23.7, 31.7, 122.0 (d,
JCF = 25 Hz), 122.8 (d, JCF = 7 Hz), 129.2 (d, JCF = 2 Hz), 129.4
(d, JCF = 5 Hz), 130.5, 131.5, 150.5 (d, JCF = 2 Hz), 162.4 (d, JCF
=
236 Hz). 19F NMR (470 MHz, CDCl3) dF 67.6 (br s). IR (neat) mmax
2960, 2870, 1620, 1580, 1535, 1440, 1320, 1235, 1135, 1080, 965,
760 cm−1. MS (EI, 70 eV) m/z 204 (M+, 100%), 162 (43), 133 (47).
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 3956–3962 | 3961
©