Communications
1H), 2.53 (dd, J = 11.2, 9.0 Hz, 1H), 2.40 (s, 3H), 2.17 (dddd, J = 16.6,
10.0, 2.6, 2.4 Hz), 2.08 (dddm, J = 16.4, 9.2, 8.8 Hz, 1H), 2.01 (dtm, J =
11.8, 6.9 Hz, 1H), 1.76 (ddddd, J = 12.7, 8.8, 7.1, 2.8, 1.5 Hz, 1H), 1.64
(ddddd, J = 12.9, 11.7, 10.0, 9.2, 6.6 Hz, 1H), 1.03 ppm (dq, J = 12.0,
7.4 Hz, 1H); 13C NMR (100 MHz, CDCl3): d = 143.4, 135.3, 133.9,
130.5, 129.7, 127.4, 124.7, 124.1, 52.6, 49.0, 42.0, 39.6, 32.2, 27.4, 24.0,
21.5 ppm; for the full data set, see the Supporting Information.
data and from the structure of 35 in the solid sate
(Figure 1).[17–19] These trapping experiments provide compel-
ling evidence for the intervention of a vinylcopper species of
Received: July 24, 2007
Published online: October 17, 2007
Keywords: alkynes · copper · cycloaddition · gold ·
.
tandem reactions
[1] a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis,
Pergamon, Oxford, 1990; b) W. R. Roush, in Comprehensive
Organic Synthesis, Vol. 5 (Eds.: B. M. Trost, I. Fleming),
Pergamon, Oxford, 1991, pp. 513 – 550; c) K. C. Nicolaou, S. A.
Figure 1. One of the two independent molecules of 35 in the solid
state. Anisotropic displacement parameters are drawn at the 50%
probability level.
type O (Scheme 3), and hence exclude metallacycles of type B
that are usually invoked in [4+2] cycloadditions catalyzed by
low-valent-metal complexes.[3] Although we concede that the
mechanism of this novel copper-catalyzed Diels–Alder pro-
tocol deserves further study in the laboratory and in silico, in
particular to clarify if the conversion of M into O proceeds
directly or involves vinylidenes of type N or N’, all the
available data imply that a reaction mechanism beyond that
of conventional schemes is operative.
[2] For pioneering studies, see a) A. Carbonaro, A. Greco, G.
Ficini, Tetrahedron Lett. 1979, 20, 1499 – 1502; c) H. tom Dieck,
3362; f) R. S. Jolly, G. Luedtke, D. Sheehan, T. Livinghouse, J.
[3] a) P. A. Wender, J. A. Love, Adv. Cycloaddition, Vol. 5 (Ed.: M.
Harmata), JAI Press, Greenwich, 1999, pp. 1 – 45; b) M. Lautens,
Experimental Section
[4] For leading references, see a) P. A. Wender, T. E. Smith,
Witulski, J. Lumtscher, U. Bergsträßer, Synlett 2003, 708 – 710;
g) D. Motoda, H. Kinoshita, H. Shinokubo, K. Oshima, Angew.
1860 – 1862; h) A. Saito, T. Ono, A. Takahashi, T. Taguchi, Y.
Shibata, K. Takasaku, Y. Takesue, N. Hirata, K. Takagi, Synlett
Nfflæez, A. M. Echavarren, Chem. Commun. 2007, 333 – 346;
d) For gold-catalyzed formal Diels–Alder reaction involving
furans, see: A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M.
Representative procedure (Table 3, entry 2): NEt3 (70 mL, 0.51 mmol)
was added to a solution of 1b (X = NTs) (140 mg, 51 mmol)[20] and CuI
(9.7 mg, 0.51 mmol) in CH2Cl2 (2 mL) to give a cloudy yellow
solution. After stirring the reaction mixture for 16 h, it was
concentrated, and the residue purified by flash chromatography
(hexanes/EtOAc, 85:15) to give 2b as a white solid (133 mg, 95%).
M.p. 110–1128C; 1H NMR (400 MHz, CDCl3): d = 7.68 (d, J = 8.3 Hz,
2H), 7.28 (d, J = 8.3 Hz, 2H), 5.74 (dddd, J = 10.0, 3.5, 2.7, 1.2 Hz,
1H), 5.63 (ddq, J = 10.0, 2.1, < 1 Hz, 1H), 5.52 (m, 1H), 3.98 (ddt, J =
13.2, 2.6, 1.7 Hz, 1H), 3.80 (ddd, J = 8.8, 8.0, < 1 Hz, 1H), 3.69
(dquint, J = 13.2, 1.6 Hz, 1H), 2.94 (m, 1H), 2.63 (dd, J = 11.4, 8.8 Hz,
1H), 2.59 (m, 2H), 2.39 ppm (s, 3H); 13C NMR (100 MHz, CDCl3):
d = 143.4, 134.8, 133.7, 129.6, 127.5, 126.7, 123.1, 117.1, 52.8, 50.7, 37.8,
26.6, 21.5 ppm; for the full data set, see the Supporting Information.
Copper-catalyzed Diels–Alder/alkylation cascade: A solution of
substrate 21c (X = I, 30 mg, 68 mmol) in THF (1 mL) was added to a
solution of copper mesitylene (15 mg, 82 mmol) in THF (1 mL) at
ꢀ788C. The resulting mixture was warmed to room temperature and
stirred for 16 h to give a cloudy dark brown solution. Water (0.5 mL)
was added and the mixture diluted with Et2O (20 mL). The organic
layer was washed with water (2 10 mL), dried (MgSO4), and
evaporated to dryness, before purifying the residue by flash chroma-
tography (hexanes/EtOAc, 4:1) to give 35 as a clear oil which
solidified upon standing (17 mg, 81%). 1H NMR (400 MHz, CDCl3):
d = 7.70 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 5.84 (dt, J = 9.6,
2.3 Hz, 1H), 5.61 (ddd, J = 9.6, 2.8, 1.9 Hz, 1H), 3.92 (dddt, J = 13.8,
3.6, 2.2, 1.8 Hz, 1H), 3.85 (dd, J = 9.0, 8.2 Hz, 1H), 3.62 (ddm, J =
13.8, 1.8 Hz, 1H), 3.03 (dddt, 1H, J = 11.2, 8.0, 3.0, 1.6 Hz), 2.69 (m,
[6] The loss of the trimethylsilyl (TMS) group after work-up is
ascribed to a cleavage mechanism assisted by the soft transition-
metal cation as previously described for Ag+, see A. Fürstner, K.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 8845 –8849
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Take advantage of blue reference links
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&