Catalysis by Chiral Brønsted Acids and Bases
M. Iinuma, S. Matsuura, T. Tanaka, Chem. Pharm. Bull. 1984,
32, 1472–1476.
[10] T. Patonay, G. Litkei, M. Zsuga, A. Kiss, Org. Prep. Proced.
Int. 1984, 16, 315–319.
acetate (25; 11.7 mg, 40%). According to the HPLC-analysis (for
conditions see the electronic supporting information), the product
was racemic within the limits of accuracy of the analysis (eeϽ2%).
Supporting Information (see also the footnote on the first page of
this article): Conditions for chiral HPLC analysis of flavanones 2,
9, 10, 23, 30–32, and figures for the X-ray structural analysis of
compound 20.
[11] a) G. Solladié, N. Gehrold, J. Maignan, Eur. J. Org. Chem.
1999, 2309–2314; b) R. G. Harvey, J.-T. Hahn, M. Bukowska,
H. Jackson, J. Org. Chem. 1990, 55, 6161–6166.
[12]
a) N. S. Poonia, K. Chhabra, C. Kumar, V. W. Bhagwat, J. Org.
Chem. 1977, 42, 3311–3313; b) I. Thomsen, K. B. G. Torssell,
Acta Chem. Scand., Ser. B 1988, 42, 303–308; c) L. Reichel,
J. Steudel, Justus Liebigs Ann. Chem. 1942, 553, 83–97; d) T.
Oyamada, Bull. Chem. Soc. Jpn. 1935, 10, 182–186.
a) J. K. Makrandi, S. Bala, Synth. Commun. 2000, 30, 3555–
3558; b) H. García, S. Iborra, M. A. Miranda, J. Primo, Het-
erocycles 1985, 23, 1983–1989.
Acknowledgments
[13]
L. H. thanks the Deutsche Forschungsgemeinschaft (DFG) for
funding within the Emmy Noether Programm, and Prof. Carsten
Bolm, RWTH Aachen, for continuing support.
[14]
[15]
K. Tanaka, T. Sugino, Green Chem. 2001, 3, 133–134.
G. Zemplén, R. Bognár, L. Mester, Ber. Dtsch. Chem. Ges.
1942, 75, 1432–1438.
[1] a) G. Forkmann, W. Heller, in Comprehensive Natural Products
Chemistry, vol. 1, Elsevier, 1999, pp. 713–748; b) K. Springob,
J. Nakajima, M. Yamazaki, K. Saito, Nat. Prod. Rep. 2003, 20,
288–303.
[2] a) Ø. M. Andersen, K. R. Markham, Flavonoids: Chemistry,
Biochemistry and Applications, CRC Press, Boca Raton, 2006;
b) T. A. Geissman, The Chemistry of Flavonoid Compounds,
Pergamon Press, Oxford, 1962.
[3] a) M. Gensheimer, A. Mushegian, Protein Sci. 2004, 13, 540–
544; b) C. Herles, A. Braune, M. Blaut, Arch. Microbiol. 2004,
181, 428–434.
[4] Chalcone isomerase: a) E. Wong, E. Moustafa, Tetrahedron
Lett. 1966, 26, 3021–3022; b) E. Moustafa, E. Wong, Phyto-
chemistry 1967, 6, 625–635; c) K. Hahlbrock, H. Zilg, H.
Grisebach, Eur. J. Biochem. 1970, 15, 13–18; d) R. A. Bednar,
J. R. Hadcock, J. Biol. Chem. 1988, 263, 9582–9588.
[16]
[17]
a) D. J. Macquarrie, R. Nazih, S. Sebti, Green Chem. 2002, 4,
56–59; b) L. M. Harwood, G. C. Loftus, A. Oxford, C. Thom-
son, Synth. Commun. 1990, 20, 649–657.
a) A. Aitmambetov, C. Dalimov, A. Kubzheterova, Chem. Nat.
Compd. 2002, 37, 421–423; b) M. Majewski, G. Bantle, Tetrahe-
dron Lett. 1989, 30, 6653–6656; c) S. W. Sathe, K. N. Wadod-
kar, Indian J. Chem. Sect. B 1982, 21, 153–154; d) M. B. Ba-
gade, A. W. Thool, P. D. Lokhande, B. J. Ghiya, Indian J.
Chem. Sect. B 1991, 30, 973–975.
[18]
[19]
T. Patonay, R. S. Varma, A. Vass, A. Lévai, J. Dudás, Tetrahe-
dron Lett. 2001, 42, 1403–1406.
a) K. Kaneda, T. Arai, Org. Biomol. Chem. 2003, 1, 2041–2043;
b) Y. Maki, K. Shimada, M. Sako, K. Hirota, Tetrahedron
1988, 44, 3187–3194; c) G. Pandey, A. Krishna, G. Kumaras-
wamy, Tetrahedron Lett. 1987, 28, 4615–4616; d) R. Matsush-
ima, H. Kageyama, J. Chem. Soc. Perkin Trans. 2 1985, 743–
748; e) R. Matsushima, I. Hirao, Bull. Chem. Soc. Jpn. 1980,
53, 518–522; f) F. R. Stermitz, J. A. Adamovics, J. Geigert, Tet-
rahedron 1975, 31, 1593–1595.
[5] a) J. M. Jez, J. P. Noel, J. Biol. Chem. 2002, 277, 1361–1369; b)
J. M. Jez, M. E. Bowman, J. P. Noel, Biochemistry 2002, 41,
5168–5176; c) J. M. Jez, M. E. Bowman, R. A. Dixon, J. P.
Noel, Nat. Struct. Biol. 2000, 7, 786–791.
[6] L. Reichel, W. Burkart, Ber. Dtsch. Chem. Ges. 1941, 74, 1802–
1805.
[20]
[21]
[22]
[23]
B. S. Goud, K. Panneerselvam, D. E. Zacharias, G. R. Desi-
raju, J. Chem. Soc. Perkin Trans. 2 1995, 325–330.
Y. Hoshino, N. Takeno, Bull. Chem. Soc. Jpn. 1986, 59, 2903–
2904.
K. Maruyama, K. Tamanaka, A. Nishinaga, A. Inada, T. Nak-
anishi, Tetrahedron Lett. 1989, 30, 4145–4148.
a) N. Ahmed, W. H. Ansari, J. Chem. Res. Synop. 2003, 572–
573; b) N. Ahmed, H. Ali, J. E. van Lier, Tetrahedron Lett.
2006, 46, 253–256.
[7] S. Kostanecki, W. Szabranski, Ber. Dtsch. Chem. Ges. 1904, 37,
2634–2635.
[8] The kinetics, thermodynamics and the mechanism of the 2Ј-
hydroxychalcone/flavanone interconversion, mostly in aque-
ous/alcoholic solution, have been studied intensively: a) E. A.
González, M. A. Nazareno, C. D. Borsarelli, J. Chem. Soc. Per-
kin Trans. 2 2002, 2052–2056; b) A. Cisak, C. Mielczarek, J.
Chem. Soc. Perkin Trans. 2 1992, 1603–1607; c) V. L. Arcus,
C. D. Simpson, L. Main, J. Chem. Res. (S) 1992, 80–81; d)
R. G. Button, P. J. Taylor, J. Chem. Soc. Perkin Trans. 2 1992,
1571–1580; e) C. M. Brennan, I. Hunt, T. C. Jarvis, C. D. John-
son, P. D. McDonnell, Can. J. Chem. 1990, 68, 1780–1785; f)
C. O. Miles, L. Main, J. Chem. Soc. Perkin Trans. 2 1989, 1623–
1632; g) C. O. Miles, L. Main, J. Chem. Soc. Perkin Trans. 2
1988, 195–198; h) J. J. P. Furlong, N. S. Nudelman, J. Chem.
Soc. Perkin Trans. 2 1988, 1213–1217; i) C. O. Miles, L. Main,
J. Chem. Soc. Perkin Trans. 2 1985, 1639–1642; j) J. J. P. Fur-
long, N. S. Nudelman, J. Chem. Soc. Perkin Trans. 2 1985, 633–
639; k) K. B. Old, L. Main, J. Chem. Soc. Perkin Trans. 2 1982,
1309–1312; l) A. I. Panasenko, O. I. Kachurin, S. P. Starkov,
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1975, 18,
1203–1207 (C. A. 1975, 83, 205454); m) G. Litkei, R. Bognár,
Z. Dinya, E. R. Dávid, in Topics in Flavonoid Chemistry and
Biochemistry (Eds.: L. Farkas, M. Gábor, F. Kállay), Elsevier,
Amsterdam, 1975, pp. 110–118; n) A. Grouiller, P. Thomassery,
H. Pacheco, Bull. Soc. Chim. Fr. 1973, 3448–3451; o) A.
Corvaisier, Bull. Soc. Chim. Fr. 1962, 528–535; p) M. Shimoko-
riyama, J. Am. Chem. Soc. 1957, 79, 4199–4202.
[24]
[25]
[26]
N. K. Sangwan, B. S. Varma, K. S. Dhindsa, Chem. Ind. (Lon-
don) 1984, 271–272.
Z. Sanicanin, I. Tabakovic, Tetrahedron Lett. 1986, 27, 407–
408.
a) Y. Noda, M. Watanabe, Helv. Chim. Acta 2002, 85, 3473–
3477; b) K. J. Hodgetts, Tetrahedron Lett. 2001, 42, 3763–3766;
c) K. J. Hodgetts, ARKIVOC 2001, 74–79; d) G. Solladié, N.
Gehrold, J. Maignan, Tetrahedron: Asymmetry 1999, 10, 2739–
2747; e) A. V. Rama Rao, A. S. Gaitonde, K. R. C. Prakash, S.
Prahlada Rao, Tetrahedron Lett. 1994, 35, 6347–6350.
a) M. Kawasaki, H. Kakuda, M. Goto, S. Kawabata, T. Kome-
tani, Tetrahedron: Asymmetry 2003, 14, 1529–1534; b) T. Todo-
roki, A. Saito, A. Tanaka, Biosci. Biotechnol. Biochem. 2002,
66, 1772–1774.
[27]
[28]
[29]
[30]
M. M. Biddle, M. Lin, K. A. Scheidt, J. Am. Chem. Soc. 2007,
129, 3830–3831.
S. Chandrasekhar, K. Vijeender, K. V. Reddy, Tetrahedron Lett.
2005, 46, 6991–6993.
a) E. Sekino, T. Kumamoto, T. Tanaka, T. Ikeda, T. Ishikawa,
J. Org. Chem. 2004, 69, 2760–2767; b) T. Ishikawa, Y. Oku, T.
Tanaka, T. Kumamoto, Tetrahedron Lett. 1999, 40, 3777–3780;
c) T. Tanaka, T. Kumamoto, T. Ishikawa, Tetrahedron: Asym-
metry 2000, 11, 4633–4637; d) T. Tanaka, T. Kumamoto, T.
Ishikawa, Tetrahedron Lett. 2000, 41, 10229–10232.
[9] a) H. Kagawa, T. Takahashi, M. Uno, S. Ohta, Y. Harigaya,
Chem. Pharm. Bull. 2004, 52, 953–956; b) M. De, D. P. Majum-
dar, N. G. Kundu, J. Indian Chem. Soc. 1999, 76, 665–674; c)
Eur. J. Org. Chem. 2007, 5886–5898
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5897